Amomum villosum, which is an important perennial medicinal plant, easily suffers from continuous cropping obstacles in the plantation. The aim of this study is to find an effective method to solve the problem of A. villosum continuous cropping. In this study, we analyzed four fields in which A. villosum was continuously cropped and a fallow field to reveal the effects of continuous cropping on the rhizosphere soil physicochemical properties, enzyme activities, and bacterial and fungal communities. Most of the soil nutrient contents gradually increased as the number of years of continuous cropping increased, whereas the soil pH decreased slightly. The soil urease and acid phosphatase activities tended to increase as the length of the continuous cropping period increased, which may have accelerated the conversion of soil substances. Furthermore, the alpha diversity of the bacterial and fungal communities decreased as the duration of the continuous cropping period increased. Additionally, the redundancy analysis revealed that bacterial and fungal community structures at the phylum level were the most correlated with pH value and catalase activity, respectively. This study may be useful for promoting the continuous cropping and sustainable development of A. villosum.
Coffee is one of the most valuable agricultural commodities worldwide, second only to oil in terms of international trade. Coffea arabica L. is a widely cultivated and economically important crop that is responsible for about 90% of the global production of coffee. In this study, we selected five C. arabica cultivation sites at different altitudes to clarify the effects of altitude on rhizospheric soil physical–chemical characteristics and microbial communities. The samples collected at low altitudes were more nutrient-deficient and acidic than the soil samples collected at medium–high altitudes. The Proteobacteria-to-Acidobacteria ratio increased from lower altitudes to medium–high altitudes. Additionally, although Ascomycota was the dominant fungal phylum, it was unaffected by the altitude. Furthermore, the alpha richness and diversity of the bacterial and fungal communities were higher at medium–high altitudes than at low altitudes. Moreover, the redundancy analysis indicated that microbial phyla were closely associated with pH. These findings suggest that C. arabica should be cultivated at medium–high altitudes, which is conducive to sustainable management and the production of high-quality C. arabica beans.
Backgroud: Icewine is a unique food in the world. Lipids in icewine are nutritious and healthy for humans. However, limited studies are available on the qualitative and quantitative analysis of icewine. Method: UPLC-QTOF-MS approach to study lipids in icewine. Bioinformatics strategies will expand the applications of lipidomics in food science,OPLS-DA) was performed to visualise group separation and recognized significantly transform metabolites. Results: In the present study, lipid molecules belonging to 5 classes were qualitatively and quantitatively analysed. The lipids studied were as track: 102 triacylglycerols (TAG), 18 free fatty acids (FFA), 5 diacylglycerols (DAG), 6 ceramides and sphingosine-1-phosphate (Cer), and 1 N-palmitoyl-D-erythro-sphingosylphosphorylcholine (SM). The Shangri-La icewine has higher TAG and FFA content than the Canadian icewine. However, in Canadian icewine samples, the DAG (16:0/16:1) content (398.26 μg/mL) was higher than that of Shangri-La icewine specimens (522.43 μg/mL). The SM (14:0) content in Canadian icewine was higher than that of Shangri-La icewine. Conclusion:UPLC-QTOF-MS is an effective method for detecting lipids in icewine samples. The primary fundamental lipids in icewine samples were TAG, FFA, DAG, Cer, and SM. Therefore, Shangri-La icewine is more nutritious for human health than Canadian icewine.
The forest–medicinal plant management system has benefited the commercial production of Amomum villosum. However, little is known about the influence of different forestlands on the cultivation of A. villosum. The present study investigated the potential differences in the A. villosum yield and quality parameters, rhizosphere soil properties, and rhizosphere soil microbiota between a rubber plantation (RP) and a natural secondary forest (NSF). No significant differences in yield or rhizosphere soil properties of A. villosum were observed between RP and NSF, although most of the A. villosum yield parameters, the rhizosphere soil physicochemical properties, and soil enzyme activities were higher in NSF than in RP. Furthermore, the 38 volatile components had significantly higher relative abundances in NSF than in RP. Furthermore, the alpha diversity indices for the microbiota communities in the A. villosum rhizosphere soil indicated that the richness of the bacterial and fungal communities was significantly higher in NSF than in RP. These findings suggest that NSF conditions may be more appropriate than RP conditions for growing A. villosum. The data generated in this study may be useful for increasing the production of high-quality A. villosum via the exploitation of natural environments.
Bletilla striata is an important Chinese herbal plant grown widely in southwest China (Qian et al. 2021). Leaf blight was found on cultivated bletilla crops in Yunnan in 2021. The disease infected bletilla leaves and it was present in the field from April to November with the highest incidence (86% plants diseased) recorded in early September in Puer area. Foliar lesions were circular (Φ0.5-1.8 cm) or oval, with pale-gray center and narrow gray-brown outer area surrounded by a yellow halo. The lesions coalesced later to form large irregular spots or blighted areas on leaves. Symptomatic bletilla leaves were sampled from fields in Jiangcheng (E101.8672o, N22.5803o) and Simao (E109.7816o, N22.7891o) counties, Yunnan in July 2021. Seven fungal isolates were obtained from (BJ01-BJ04) and Simao samples (HBJ05-HBJ07) via lesion-tissue culture and hypha-tip purification on PDA medium. A pathogenicity test following Koch’s Postulates (Grimms et al. 2006) was conducted using each isolate by inoculating 45-day old bletilla plant (n=30, Zihua cultivar) in a greenhouse through spraying hypha-spore suspension (3.25×104 CFU/mL) prepared with 14 d fresh DNA culture. Non-inoculated plants (n=30) were used as controls. The experiment was repeated once. The isolates BJ02 and HBJ06 (deposited in Yunnan Agric. Univ. Microbes Herbarium) were shown pathogenic to bletilla since similar lesions formed on seedlings 7 d post inoculation and pure fungal cultures with the same colony morphology as those of BJ02 and HBJ06 were re-isolated from leaf lesions 14 dpi. Isolates BJ02 and HBJ06 produced identical colony and conidium morphology after they were incubated at 25oC for 7 d on PDA. Colonies were circular, pale brown, Φ5.5-7.5cm, with villous surface and abundant aerial hyphae. Mycelia were septate, colorless, Φ3-4 µm and with acute-angled branches. Conidiophores developed from hyphae were erect, septate, pale-brown colored and 60-200 µm long. Conidia (produced scarcely and ripened slowly) were long-oval or petaloid, straight or slightly curved, brown, sized 28-45×10-14 µm. Most conidia were divided into 4 cells by 3 septa; the middle two were bigger than the basal and apex cells. Both BJ02 and HBJ06 were identified as Curvularia sp. based on their morphological characters (Tan et al. 2018). The rDNA-ITS, TEF1α and GAPDH genes (Tan et al. 2018) were amplified from these isolates with PCR (White et al. 1990) and sequenced. ITS sequences of the two isolates were both 574 bp (acc. no. OL587997 & OL336480) and 100% (574/574 bp) identical shown by blast comparison. Further blast analyses of ITS (574 bp, OL587997), TEF1α (532 bp, ON637120) and GAPDH (881 bp, ON637121) from isolate BJ02 showed that they were 99.27% (547/551 bp), 100% (842/842 bp) and 99.8% (507/508 bp) identical respectively with those of Curvularia reesii BRIP4358 (MH414907). The 3 genes of BJ02 were concatenated and phylogenic analysis (Tamura et al, 2013) of the concatenated sequence with those of Curvularia spp. showed that BJ02 was clustered with C. reesii BRIP4358 on the same end-branch of the tree with 100% confidence. Therefore, BJ02 and HBJ06 are the same species identified as Curvularia reesii and it is the pathogen causing bletilla leaf blight. C. reesii was first isolated from the air in Australia in 1963 and was named by Tan et al. in 2018. It has not been reported as a plant pathogen elsewhere. This is the first record of this fungus causing bletilla leaf blight in China. Keywords: Bletilla striata; leaf blight; Curvularia reesii; disease symptoms; pathogen morphology; multigene identification References (1) D.J. Grimes. Microbes, 1(5): 223-228, 2006. (2) L.H. Qian et al. Jiangshu Agric. Sci. 49(19): 64-71, 2021. (3) K. Tamura et al. Mol. Bio. & Evol. 30 (12): 2725- 2729, 2013. (4) Y. P. Tan et al. MycoKeys, 35: 1-25. 2018. (5) T.J. White et al. In: PCR Protocols: A Guide to Methods and Applications (eds. M.A. Innis et al.), Acad. Press, Inc. New York. 315-322, 1990.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.