Artesunate is a semisynthetic derivative from artemisinin, a natural product from the Chinese herb Artemisia annua L. It exerts antimalarial activity, and, additionally, artemisinin and its derivatives are active against cancer cells. The active moiety is an endoperoxide bridge. Its cleavage leads to the formation of reactive oxygen species and carbon-centered radicals. These highly reactive molecules target several proteins in Plasmodia, which is thought to result in killing of the microorganism. DNA damage induced by artemisinins has not yet been described. Here, we show that artesunate induces apoptosis and necrosis. It also induces DNA breakage in a dose-dependent manner as shown by single-cell gel electrophoresis. This genotoxic effect was confirmed by measuring the level of ;-H2AX, which is considered to be an indication of DNA double-strand breaks (DSB). Polymerase B-deficient cells were more sensitive than the wild-type to artesunate, indicating that the drug induces DNA damage that is repaired by base excision repair. irs1 and VC8 cells defective in homologous recombination (HR) due to inactivation of XRCC2 and BRCA2, respectively, were more sensitive to artesunate than the corresponding wild-type. This was also true for XR-V15B cells defective in nonhomologous endjoining (NHEJ) due to inactivation of Ku80. The data indicate that DSBs induced by artesunate are repaired by the HR and NHEJ pathways. They suggest that DNA damage induced by artesunate contributes to its therapeutic effect against cancer cells. [Cancer Res 2008;68(11):4347-51]
Since multidrug resistance (MDR) is a major cause of failure in cancer chemotherapy, we report a microfluidic approach combined with the same-single-cell analysis to investigate the modulation of MDR, manifested as the inhibition of drug efflux. A microfluidic chip that was capable of selecting and retaining a single multidrug-resistant cancer cell was used to investigate drug efflux inhibition in leukemia cell lines. Three advantages of the microfluidic-based same-single-cell analysis (dubbed as SASCA) method have been revealed. First, it readily detects the modulation of drug efflux of anticancer compounds (e.g., daunorubicin) by MDR modulators (e.g., verapamil) among cellular variations. Second, SASCA is able to compare the different cellular abilities in response to drug efflux modulation based on the drug transport kinetics of single cells. Third, SASCA requires only a small number of cells, which may be beneficial for investigating drug resistance in minor cell subpopulations (e.g., cancer "stem" cells).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.