Abstract-The double and triple Langmuir probe diagnostic systems with their necessary driving circuits are developed successfully for the characterization of laboratory built low pressure inductively coupled nitrogen plasma, generated by 13.56 MHz radio frequency (RF) power supply along with an automatic impedance matching network. Using the DC properties of these two probes, the discharge plasma parameters like ion saturation current (I io ), electron temperature (kT e ) and electron number density (n e ) are measured at the input RF power ranging from 250 to 400 W and filling gas pressures ranging from 0.3 to 0.6 mbar. An increasing trend is observed in kT e and n e with the increase of input RF power at a fixed filling gas pressure of 0.3 mbar, while a decreasing trend is observed in kT e and n e with the increase of filling gas pressure at a fixed input RF power of 250 W.
The objective of the research was to understand and improve the unusual physical and atomization properties of the complexes/adhesives derived from the tapioca starch by addition of borate and urea. The characterization of physical properties of the synthesized adhesives was carried out by determining the effect of temperature, shear rate, and mass concentration of thickener/stabilizer on the complex viscosity, density, and surface tension. In later stage, phenomenological analyses of spray jet breakup of heated complexes were performed in still air. Using a high speed digital camera, the jet breakup dynamics were visualized as a function of the system input parameters. The further analysis of the grabbed images confirmed the strong influence of the input processing parameters on full cone spray patternation. It was also predicted that the heated starch adhesive solutions generate a dispersed spray pattern by utilizing the partial evaporation of the spraying medium. Below 40°C of heating temperature, the radial spray cone width and angle did not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The discharge coefficient, mean flow rate, and mean flow velocity were significantly influenced by the load pressure but less affected by the temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.