The food industry faces numerous challenges to assure provision of tasty and convenient food that possesses extended shelf life and shows long‐term high‐quality preservation. Research and development of antimicrobial materials for food applications have provided active antibacterial packaging technologies that are able to meet these challenges. Furthermore, consumers expect and demand sustainable packaging materials that would reduce environmental problems associated with plastic waste. In this review, we discuss antimicrobial composite materials for active food packaging applications that combine highly efficient antibacterial nanoparticles (i.e., metal, metal oxide, mesoporous silica and graphene‐based nanomaterials) with biodegradable and environmentally friendly green polymers (i.e., gelatin, alginate, cellulose, and chitosan) obtained from plants, bacteria, and animals. In addition, innovative syntheses and processing techniques used to obtain active and safe packaging are showcased. Implementation of such green active packaging can significantly reduce the risk of foodborne pathogen outbreaks, improve food safety and quality, and minimize product losses, while reducing waste and maintaining sustainability.
Diverse hard template synthetic methodologies are being employed for the synthesis of mesostructured metal oxide and carbon nanomaterials, with the application of mesoporous silica as the hard template. We describe the main differences and advantages/disadvantages between the soft and hard templated synthetic routes, provide an overview of the synthesis and characteristics of different templating mesoporous silica nanomaterials and discuss on practical aspects of the hard template synthetic methodology for obtaining various metal-oxide and carbon-based mesostructured nanomaterials. Also, we cover various recent applications of thus constructed mesostructured metal oxide and carbon nanomaterials, such as sensing, energy storage, fuel cells, and catalysis, which demonstrate the highly promising character of the hard template methodology for the synthesis of a new generation of nanomaterials with broad application potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.