One of the main goals when treating spasticity is to relieve pain and improve function. Intramuscular injection of botulinum toxin type A (BTX-A) has gained widespread acceptance in the treatment of spastic cerebral palsy. Several studies have clearly shown the short-term functional benefit of BTX-A treatment. Information is limited, however, on the efficacy of medium and long-term regimens, using repeated injection of BTX-A. The aim of the present open-label, prospective study was to evaluate functional outcome in children with spastic cerebral palsy after 1 year of treatment with BTX-A, using the Gross Motor Function Measure (GMFM) as a validated outcome measure. Patients (n=25, age 1.5--15.5 years) were treated with BTX-A for adductor spasm (n=12) or pes equinus (n=13). The local effect was evaluated using passive range of motion and modified Ashworth Scale. Apart from a significant improvement in joint mobility and reduction of spasticity compared to pretreatment values (P < 0.01), we demonstrated a significant improvement of gross motor function after 12 months of treatment, with a median gain of 6% in total and goal scores (P < 0.001). An increase in GMFM scores was particularly evident in younger and moderately impaired children (Gross Motor Function Classification System level III). Whether the observed improvement in gross motor function in children with cerebral palsy is specifically related to therapy with BTX-A or represents at least in part the natural course of motor development still needs clarification.
We studied the clinical impact of neutralizing antibodies to botulinum toxin A that occurred during long-term treatment of children between 1993 and 2001. Antibodies were found in high titers in 35 of 110 (31.8%) samples from individual patients. Antibody formation correlated with secondary nonresponse (p < 0.001). The most significant risk factors for antibody formation were the frequency of treatments (p = 0.0001) and the injection of a higher weight-adapted maximum dose per treatment (p = 0.001).
Intramuscular injection of botulinum neurotoxin A is a relatively new method for treating spastic movement disorders in children. One major goal of any therapy for patients with movement disorders is to improve gross motor function. In this study, 18 patients with adductor spasm were treated with botulinum neurotoxin A. Treatment effect was determined with the Gross Motor Function Measure, a standardized, validated instrument designed to assist in assessment of gross motor function. Spastic muscle hyperactivity and joint mobility were evaluated by the modified Ashworth Scale and by range of motion, respectively. Compared to pretreatment values, significant improvement in gross motor function (P < .010), decrease in the modified Ashworth Scale, and increase in the range of motion (P < .010) were achieved. Patients with moderate impairment of gross motor function (classed at level III and level IV in the Gross Motor Function Classification System) benefited most from treatment. In patients with severe handicap (level V), only one of five treated patients showed improvement in gross motor function. Nevertheless, all patients in this subgroup benefited from improved ease in hygienic care. In conclusion, we have demonstrated that for most children with moderate functional impairment, the Gross Motor Function Measure is a useful instrument for objective documentation of improvements of gross motor function following treatment with botulinum neurotoxin A.
Three patients with cerebral palsy are described suffering, respectively, of pes equinus, spasm of the m. teres major and flexion spasm of the hand, who were treated with botulinum toxin A. These patients demonstrate not only the local reduction of the muscular hyperactivity following treatment with botulinum toxin A but also the potential functional benefit resulting from such a treatment. Thus, local intramuscular injection of botulinum toxin A in children with cerebral palsy should be considered as part of a multidisciplinary treatment concept, since reduction of the disability and the functional improvements could have high impact on daily living activities.
Children show a significant difference in the degree of cortical activation compared to adults when performing a simple motor task. The change in fMRI activation patterns may reflect a maturation process of primary and secondary motor areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.