This paper studies the crashworthiness characteristics of a fuselage section and its improvement. A full-scale three-dimensional finite element model of the fuselage section is developed using a nonlinear finite element code, PAM-CRASH. The simulation is implemented to determine the structural deformation and impact response in terms of peak loads and acceleration peaks at the floorlevel, deformation mode, energy absorption, and structural integrity, and then to assess the crashworthiness of the fuselage section. By partitioning the total energy dissipated, it is shown that the frames and the supports of the cargo floor play important roles in the process of energy dissipation. Based on the results, an effective approach to improve the crashworthiness of the fuselage section is presented. The paper also provides an in-depth analysis in the deformation mechanism of the fuselage section under a vertical crash, which will be helpful to effectively prevent the cabin floor from heavily damage and maintain the integrity of the fuselage section.
Purpose
Wingtip loss is an existing type of transport aircraft hazard which is a real threat to flight safety caused by a missile strike, underwing engine explosion or impact with obstructions when performing near-ground operations. The primary effect of the wingtip loss is an asymmetric rolling moment, which may result in the fatal loss of control for the aircraft. This study aims to assess whether aerodynamic degradation will cause a wing-damaged transport aircraft to lose its balance under a certain level of wing damage and if a pilot can compensate for the loss of aerodynamic force and regain the balance of the aircraft.
Design/methodology/approach
In this paper, experimental and numerical studies were conducted to investigate the aerodynamic characteristics of a wingtip-lost transport aircraft in landing configuration. Various levels of wing damages including wingtip, slat and flap loss were considered. The numerical simulations were performed with ANSYS Fluent. The computational fluid dynamics calculation was validated by wind tunnel tests.
Findings
The aerodynamic performance of the aircraft with wing-damaged condition was presented. It was revealed that the wingtip loss leads to an asymmetric rolling moment and a reduction of the lift force, which affects the balance of the transport aircraft. The methods to compensate for the lift force and the asymmetric rolling moment were investigated for a safe landing. The lateral balance cannot be maintained in cases with serious damage on the wing (larger than 53% of the semi-span) or moderate damage on the wing with loss of slats and flaps.
Originality/value
The nonlinear results indicate the importance of aerodynamic assessment for the sake of training pilots to properly handle the hazard situation and explore the critical facts leading to the air crash.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.