The main aim of this study was to explore the safety differences when using aluminum alloy and three different fiber reinforced composites as material for the cockpit and fuselage of light aircraft under crash landing. In accordance with the cockpit reduction amount stipulated by MIL-STD-1290A in which the reducing rates in all directions cannot exceed 15%, this study established the safety zones of impact speeds and impact angles. The overall safety zones of the carbon fiber reinforced composites and glass fiber reinforced composites cockpits were higher than that of the aluminum alloy cockpit by 38.56% and 32.12%, respectively. Among the four different fuselage materials, when carbon fiber reinforced composites was used as the cockpit material, except that the reducing rate for the crashing in the Y direction was slightly higher than the aluminum alloy cockpit, the reducing rate in the X direction and the inclined beam A direction during crashes were less than other materials, and the safety of its overall cockpit was also the most superior to other materials. The energy absorption capability of the aluminum alloy fuselage was better than the fuselages of all composite materials.The energy absorption capacity during a crash will directly influence the damage level for passengers. On the other hand, due to the different structural design in the airframes of rotorcrafts, small airplanes, and large airplanes, the mechanisms of crashworthiness and energy absorption are different. Because of the space constraints, rotorcrafts and small airplanes can only rely on the fuselage, floor, seats, and landing gear to