Information on nitrogen fertilization in growing vines is still a very limited subject, especially for crops on sandy soils in the Pampa Biome in Rio Grande do Sul, where viticulture has expanded considerably in the last decade. This study aimed to assess the impact of N doses on growth of young plants of Chardonnay and Pinot Noir vines and N forms present in sandy soil in the Pampa Biome. The experiment was conducted from October 2011 to December 2012 in a vineyard in Santana do Livramento, in Southern Rio Grande do Sul State, in soil with 82 g kg-1 clay in the 0-20 cm layer. Vines of Chardonnay and Pinot Noir varieties were subjected to applications of 0, 10, 20, 40, 60, and 80 kg N ha-1 year-1. Total N in leaves, SPAD readings, stem diameter, plant height, and dry matter of the pruned material were evaluated in two growth cycles and three times. Soil samples were collected at 0-10 and 10-20 cm depths at four crop growth stages, in which N-NH4 +, N-NO3 -, and total N were analyzed and the mineral N was calculated. The N levels applied to young vines, although they did not provide relevant changes in the N-NH4 +, N-NO3 -, and mineral N contents in the soil, were able to increase the N content in the leaves, increasing plant vigor. because the reason is that there was an increase in stem diameter, plant height, and dry matter of pruned material in most evaluation periods. These parameters suggest better growth patterns and uniformity of young grapevines with possible positive effects in anticipation of production, demonstrating the importance of nitrogen fertilization strategies to the growing vines in the sandy soil conditions of the Pampa Biome.
Animal manure may be a valuable resource for the development of agricultural sustainability. We proposed to verify the feasibility of applications of three types of animal manures to improve soil attributes and to sustain crop yields under intensive cropping and no-tillage systems. The field experiment was established in 2004 on Typic Hapludalf soil with pig slurry (PS), cattle slurry (CS), pig deep-litter (PL), mineral fertilizer (MF) and a non-fertilized treatment. From 2004 to 2015, were grown black oat, maize, forage turnip, black beans, and wheat. Soil samples were taken after winter 2014 and summer 2015, and submitted to chemical, physical, microbiological and biochemical analyses. Animal manures increased soil pH, but MF caused acidification of soil. The PL and CS applications reduced soil density, and increased total pore volume and hydraulic conductivity. Animal manures increased soil P fractions, total organic carbon, total nitrogen, stimulated soil respiration, and had higher activities of glucosidase and acid phosphatase. Wheat had its biggest dry matter and grain yields with MF, but maize grain yields with CS were higher than MF. All indicators pointed that application of animal manure converges to an interesting strategy to recycle nutrients at farmyard level and to contribute to global sustainability.
The coal reserves in the south of Brazil were intensely exploited at the time of great demand for such fuel. This resulted in changes in the environment, mainly in the chemical, physical and biological characteristics of the soil. Due to the potential to control erosive processes, increase soil quality and restore biological diversity, revegetation is a promising alternative to recover those impacted areas. In that respect, bracatinga is a pioneering tree species that easily grow in different environments and has being planted as vegetation cover in areas under recovery. Therefore, the objective of this work was to characterize the chemical features and to evaluate the soil microbiological attributes in areas degraded by coal mining and under recovery using bracatinga as cover plant. In the bracatinga canopy projection area, soil samples were collected in the environmental restoration areas that have been, at the time of collecting, under a regime of 2, 4, 6 and 12 years of restoration. In addition an area with natural occurrence of bracatinga was used as control. Microbial biomass nitrogen, microbial biomass carbon and microbial biomass respiration increase in average 281, 230 and 157% respectively, when the 12‐year‐old areas were compared to the 2‐year‐old‐areas. Likewise, a decrease in qCO2 in the order of 60% was observed for that same comparison. The 12‐year‐old areas reached the same values of qCO2 found in the reference area. The data suggest an improvement in the microbiological attributes of the soil with the increase in recovery time for the studied areas. Significance and Impact of the Study In coal mining areas under recovery with typically acid soils, the use of the current recovery strategies (revegetation mainly) has been efficient to increase the quality of soils, especially in the environmental restoration areas. Soil microbiological attributes such as microbial biomass nitrogen, microbial biomass carbon, microbial basal respiration and metabolic quotient (qCO2) are dynamic and highly sensitive. These parameters have the potential to be adopted together with conventional attributes, such as floristic composition indices and species diversity indices, to evaluate the degree of any particular environmental recovery process being conducted at previously explored mining areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.