Approximately one third of the patients in both groups became seizure-free. Although no major differences were seen in terms of the improvement rate between the groups, equivalence between the two drugs was not found.
The purpose of the study was to determine if binding of the drugs to the sampling equipment during microdialysis would influence the results for carbamazepine, phenytoin and phenobarbital. In vitro experiments with microdialysis catheters and separate parts of catheters were performed to estimate the degree of drug binding to the dialysis equipment. A mathematical model to calculate drug binding and recovery is proposed. In vivo protein unbound carbamazepine concentrations in subcutaneous extracellular fluid at different flow rates (6 patients), unbound carbamazepine (1 patient) and unbound phenobarbital (1 patient) in subdural cerebrospinal fluid and subcutaneous extracellular fluid were estimated and the in vivo data were compared to the in vitro results and data generated by the mathematical model. Binding to the soft outlet polyurethane tubing was extensive and variable for phenytoin, which precluded in vivo testing, but limited and more predictable for carbamazepine and phenobarbital. None of the three compounds bound to the hard internal tubing. Phenytoin and phenobarbital did not bind to the dialysis membrane, while a small degree of binding may be present for carbamazepine. In vivo estimates of carbamazepine protein unbound subcutaneous extracellular concentrations by microdialysis, adjusted for binding to the plastic tubing, were 81% of protein unbound plasma concentrations. In single case studies, subdural cerebrospinal fluid and subcutaneous extracellular levels of carbamazepine and phenobarbital were similar and when corrected for binding to the plastic tubings they were also close to protein unbound plasma concentrations. Microdialysis can be used for reliable estimations of protein unbound carbamazepine and possibly phenobarbital concentrations when drug binding to the plastic tubing is considered. Reliable estimation of unbound phenytoin is not possible at present.
To explore possible concentration-effect relationships, gabapentin (GBP) and vigabatrin (VGB) serum concentrations were obtained from patients participating in an add-on dose-titration trial comparing GBP and VGB in partial epilepsy. Patients randomized to GBP started on 1800 mg/d and could have their dosage increased stepwise to 2400 and 3600 mg/d if seizures persisted. Those randomised to VGB started on 1000 mg/d, and the dose could be increased to 2000 and 4000 mg/d. Blood samples were obtained at steady state, at a nonstandardized time, from 27 patients randomized to GBP and from 36 randomized to VGB. Serum samples were analyzed using high-performance liquid chromatography. The treatment effect was expressed as percentage reduction in number of seizures from baseline. In addition, patients were classified as responders (>50% reduction in number of seizures from baseline) or nonresponders. There was no significant correlation between serum concentrations of GBP and seizure reduction at the lowest dosage, 1800 mg/d (r = -0.02, P = 0.94, Spearman-rank), nor between VGB serum levels and seizure reduction at 1000 mg/d of VGB (r = -0.14, P = 0.44). The serum GBP concentrations among responders to GBP 1800 mg/d were 26 +/- 12 micro mol/L (mean +/- SD), which was not different from serum concentrations in nonresponders, 28+/-13 micro mol/L. Nor was there a difference between serum concentrations of responders and nonresponders to VGB 1000 mg/d (32 +/- 23 and 44 +/- 36 micro mol/L, respectively). Hence, with the present study design we were unable to identify specific target ranges of GBP and VGB serum concentrations.
This article is the second in a series of studies aimed at monitoring valproic acid pharmacokinetics in patients with epilepsy by subcutaneous microdialysis. In the current study, a detailed investigation on healthy volunteers is made of the relationship between total concentrations in plasma, free concentrations in plasma, and dialysate concentrations. Particular emphasis is put on validating that the in vivo recovery under standard conditions (30 mm dialyzing membrane and 0.5 microl/minute perfusion rate) is sufficiently close to 100%. It was found that the recovery was very close to 100% at 0.5 microl/minute and by in vitro studies it could be excluded that valproic acid binds to the dialysis equipment. The correlation between unbound plasma concentrations and microdialysis concentrations of valproic acid was acceptable (r = 0.80), and they did not differ systematically from one another. It is concluded that microdialysis can be used to sample subcutaneous extracellular valproic acid in a clinical setting giving reliable estimates of the unbound concentration in plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.