AuszugEs werden zwei neue Patterson-Funktionen definiert: die eine, AP 0T (r) = [P 0 (r) -P r (r)] · s Zelle (r), für den thermisch bewegten Kristall und die andere, ΔΡ ΟΑ {Γ) = [P B (r)-P(r)] · Szelle (r), für den ungeordneten Kristall. Diese Funktionen ergeben zwei neue FourierBeziehungen :Es ist möglich, aus den neuen Differenz-Pattersonfunktionen die stetigen Funktionen der diffusen Streuung, die von der Wärmebewegung oder der Lagenunordnung herrühren, ohne Kenntnis der Kristallstruktur zu berechnen. AbstractOn account of the Fourier-transform reciprocity theorem it is possible to go back and forth from physical space to reciprocal space. One mechanism involves Fourier summations of sampled values in one space, leading to a continuous, periodic function in the other. Two new Patterson functions are defined, one for a thermally agitated crystal, ZlP 0I ,(r) = [P 0 (r) -Pj-(r)] · s cel] (r), and another ΔΡ»ΑΓ) = [JVr) -P(Γ)] • *«"(r), 242 MABISA CANUT-AMOROS for a disordered crystal. These new functions yield to two new Fourier mates Τ Τ-1 and τ ^wW^Wf*)· τ~ι The new difference Patterson functions allow one to calculate the continuous diffuse-scattering functions arising from thermal and positional disorder, respectively, without any previous knowledege of the crystal structure. The quasi periodic Q functions of the thermally agitated or disordered molecular crystals are analyzed in terms of only two motifs calculated in terms of adequate Patterson functions.It is a well known fact that, in real crystals, at least thermal agitation disturbs the ideal periodicity. Wide use in crystal-structure analysis of Fourier series with coefficients l-i^il 2 (i-e · the Patterson series) implies, however, an infinite and strictly periodic structure, that is to an hypothetical structure whose electron density is identical in all unit cells, and which corresponds to the electron density of the real crystal under study, but averaged over time and space. The Patterson synthesis obtained from experimental data thus corresponds to the Patterson function of the hypothetical average crystal.On the other hand, the intensity diffracted by the real crystal is basically of two kinds: the Bragg intensities located at the lattice points of the reciprocal lattice, and a diffuse-scattering intensity. While the Patterson function corresponds to the inverse Fourier transform of the Bragg intensities only, the Q function corresponds to the inverse Fourier transform of the total intensity diffracted by the real crystal. HOSEMANN and BAGCHI (1962) pointed out that, instead of being ideally periodic as the Patterson function, the Q function, is only quasi-periodic.It was pointed out first by EWALD (1940), that it is not generally realized that the reciprocal lattice is only an incomplete representation of the Fourier transform of the crystal, and that much clearness of discussion can be gained by making full use of the conception of the Fourier transform. In order to successfully apply Fourier-transform theory to real crystals, it is necessary to...
AuszugMit Hilfe optischer Analogien wurde der Einfluß verschiedener ungeordneter Strukturen auf die diffuse Streuung von NH4NO3-I untersucht. In Betracht gezogen wurden drei Strukturmodelle, die den von SHINNAKA vorgeschlagenen ungeordneten Strukturen entsprechen. Die (^-Funktionen wurden mittels eines optischen Q-Integrators erhalten. Es wird bewiesen, daß die Q-Funktion einer ungeordneten Struktur aus zwei Patterson-Funktionen berechnet werden kann, nämlich aus einer Patterson-Funktion, die der Summe der Patterson-Funktionen für die verschiedenen Orientierungen der Struktureinheiten entspricht, und einer Patterson-Funktion, die einer gemittelten Struktur zukommt. Die mit einem Buergerschen optischen Diffraktometer an den verschiedenen ungeordneten Strukturen erzeugten diffusen Beugungsdiagramme konnten durch sorgfältige Untersuchung mit der beobachteten diffusen Röntgenstrahl-Streuung identifiziert werden. Die kontinuierliche diffuse Streuung an ungeordneten Strukturen wurde mittels eines IBM-7040-Programms berechnet. AbstractThe influence of different disordered structures in the continuous diffuse scattering of NH4NO3-I is studied by using optical analogs. Three different crystal-structure models, corresponding to the disordered structures proposed by SHINNAKA, have been analized. The Q functions of the disordered structures have been obtained with the optical Q integrator. It is proved that the Q function of a disordered structure can be calculated by two Patterson functions, namely a Patterson corresponding to the sum of the Patterson maps of the different orientations of the units in the crystal structure, Optical analogs in the analysis of disorder functions 45 spending to the average structure. The diffuse scattering of the Fraunhofer patterns obtained by using the Buerger optical diffractometer and corresponding to the different disordered structures show that these structures can be identified by a careful study of the observed x-ray diffuse scattering. The continuous diffuse-scattering of a disordered structure has been calculated by using an ad-hoc TBM-7040 program.
AuszugEs wird eine neue Methode der Bestimmung der Struktur von Molekülkristallen mitgeteilt. Die Methode beruht auf der Differenz-Fouriertransformations-Funktion, die die Eigenschaft hat, daß die Molekültransformation ohne das Maximum im Nullpunkt in sie eingeht. Die DFT-Funktion wird aus der von CANUT-AMOROS (1967) gegebenen Funktion Δ Pg abgeleitet. Die Λ PQ werden aus den Bragg-Intensitäten für eine gegebene Temperatur oder für zwei verschiedene Temperaturen berechnet; dann wird aus den Λ Ρ J-Werten als Koeffizienten einer Fourier-Summation die DFT-Funktion ermittelt. Die Methode wurde geprüft an Hand der zur Verfügung stehenden Intensitäten der Interferenzen von Anthracen und Anthrachinon. AbstractA new direct method for crystal-structure determination of molecular crystals is given. The method uses the difference Fourier-transform (DFT) function which has the property of containing the molecular transform free of the origin maximum. The DFT function is calculated from the new function Δ Ρζ given by CANUT-AMOHOS (1967). The method allows one to obtain the transform peaks of the molecule directly from observed Bragg-intensity data at a given temperature, or at two different temperatures. From these Δ Ρ J is calculated. The DFT function is then calculated by using the sampled values of Δ PQ as coefficients of a Fourier summation. The method is tested using the available Bragg-intensity data of anthracene and anthraquinone.
AuszogMit Hilfe der üblichen Methoden zur Strukturbestimmung kann die wahre Elektronendichte-Verteilung in einem Kristall mit Molekülstruktur nicht erhalten werden. Mit der Elektronenschalen-Selektionsmethode (SES) lassen sich hingegen die Beiträge der inneren und der äußeren Elektronen zur Intensität eines Interferenzstrahls getrennt behandeln. Die Methode wurde zur Untersuchung der Struktur des Hexamethylentetramins angewandt. Isotrope und anisotrope Gauß-Funktionen zur Beschreibung von Form und Wärme-schwingung der C-, N-und O-Atome wurden nach der Methode der kleinsten Quadrate verfeinert. Die drei-dimensionale Elektronendichte-Verteilung in den äußeren Elektronenschalen der Atome wurden aus Röntgenstrahl-Interferenzdaten erhalten und mit Daten, die sich mit Hilfe einer Faltungsmethode ergaben, verglichen. AbstractConventional methods used in x-ray crystallography do not permit a true density distribution of a molecular crystal to be obtained. The selected-electronshell method allows treating independently the contribution of the inner and outer electrons of the different atoms to the total x-ray scattering. This method is applied to the case of hexamine. Isotropic and anisotropic Gaussian functions describing the form and thermal factors of carbon, nitrogen and hydrogen are refined by the least-squares method. The corresponding three-dimensional electron-density maps of the outer electrons of the molecule of hexamine are obtained from x-ray diffraction data and compared with the calculated ones using a convolution method. Introduction X-ray diffraction is a unique tool that allows the observation of the electron density of a crystal. After the work of BRAGG, in which he showed that the electron density of a crystal could be obtained from
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.