Controlled ovarian stimulation (COH) in PCOS is a challenge for fertility expert both ovarian hyperstimulation syndrome (OHSS) and oocytes immaturity are the two major complication. Ovarian response to COH vary widely among POCS patients and while some patients are more likely to show resistance to COH, other experienced an exaggerated response. The aim of our study is to investigate a possible correlation between PCOS phenotypes and the variety of ovarian response to COH and ART outcomes in patients with different PCOS phenotypes. We retrospectively analyzed a total of 71 cycles performed in 44 PCOS infertile patients attending ART at Centre of Infertility and Assisted Reproduction of Pisa University between January 2013 and January 2016. Patientsundergoing IVF with GnRH-antagonist protocol and 150-225 UI/days of recombinant FSH; triggering was carried out using 250 mg of recombinant hCG or a GnRH analogous on the basis of the risk to OHSS. We observed that Phenotype B had a tendency to have a greater doses of gonadotropins used respect to all phenotypes. Phenotype A group showed a greater serum estrogen levels compared to all phenotypes groups, a greater number of follicles of diameter between 8-12 mm found by ultrasound on the day of triggering and a greater mean number of freeze embryo. Additionally serum AMH and antral follicles count (AFC) follow the same trend in the different phenotypes ad they were significantly higher in phenotype A and in phenotype D. In conclusion this study shows that the features of PCOS phenotypes reflect the variety of ovarian response to COH as well as the risks to develop OHSS. Serum AMH and AFC are related to the degree of ovulatory dysfunction making these 'added values' in identifying the different PCOS phenotypes. Phenotype A seems to be the phenotype with the higher risk to develop OHSS and the use of GnRH as a trigger seems to improve oocyte quality. To classify PCOS phenotype at diagnosis might help clinicians to identify patients at greater risk of OHSS, customize therapy and subsequently plan the trigger agent.
An abnormal endometrial microbiota has been suggested to impair the process of embryo implantation, thus leading to repeated implantation failure (RIF) in women undergoing in vitro fertilization (IVF). However, the molecular mechanisms linking uterine microbiota and IVF out-comes are still an open question. The aim of this cohort study was to outline the relationship between endometrial microbiota, inflammation and IVF outcomes. To this purpose, endometrial microbiota and selected components of the “cytokine network” were analyzed in women presenting RIF and divided between eubiosis and dysbiosis groups, according to the percentage of endometrial lactobacilli (≥90% or <90%, respectively). The Dysbiosis group presented significantly higher tissue concentrations of the inflammatory markers (IL-6, IL-1β, HIF-1α and COX-2) and significantly lower levels of the anti-inflammatory/well-being factors, IL-10 and IGF-1, with respect to women with eubiosis. Moreover, the Lactobacillus percentage was negatively related to the concentrations of the inflammatory molecules and positively related to IL-10/IGF-1. Interestingly, the number of IVF attempts was directly related to the levels of the inflammatory factors COX-2, IL-1β and HIF-1α in the eubiosis group. Overall, endometrial dysbiosis was demonstrated to be associated with inflammation-related endometrial changes affecting the process of embryo implantation, underlining the importance of assessing uterine microbiota in patients undergoing IVF.
Treatment with estrogens in infertile POI patients in transitional phase reduces circulating FSH levels, hence causing potential spontaneous conception. Moreover, in these patients, estrogen pre-treatment seems to improve IVF outcomes in a GnRH-antagonist short protocol compared to no pre-treatment.
Recently, studies on inositol supplementation during in vitro fertilization program (IVF) have gained particular importance due to the effect of this molecule on reducing insulin resistance improving ovarian function, oocyte quality, and embryo and pregnancy rates and reducing gonadotropin amount during stimulation. Inositol and its isoforms, especially myoinositol (MYO), are often used as prestimulation therapy in infertile patients undergoing IVF cycle. Inositol supplementation started three months before ovarian stimulation, resulting in significant improvements in hormonal responses, reducing the amount of FSH necessary for optimal follicle development and serum levels of 17beta-estradiol measured the day of hCG injection. As shown by growing number of trials, MYO supplementation improves oocyte quality by reducing the number of degenerated and immature oocytes, in this way increasing the quality of embryos produced. Inositol can also improve the quality of sperm parameters in those patients affected by oligoasthenoteratozoospermia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.