An algal-bacterial consortium was tested for the treatment from a coke factory. A Chlorella vulgaris strain and a phenol-degrading Alcaligenes sp. were first isolated from the wastewater treatment plant to serve as inocula in the subsequent biodegradation tests. Batch tests were then conducted with samples from the real wastewater or using a synthetic wastewater containing 325 mg phenol/l and 500 mg NH 4 þ /l as target pollutants. Direct biological treatment of the real wastewater was not possible due to the toxicity of organic compounds. Activated carbon adsorption and UV(A-B)-irradiation were efficient in detoxifying the effluent for subsequent biological treatment as inoculation of pretreated samples with the algal-bacterial consortium was followed by complete phenol removal and NH 4 þ removal of 45%. Complete phenol removal and 33% NH 4 þ removal were achieved during the fed-batch treatment of artificial wastewater at 6 d hydraulic retention time (HRT). Under continuous feeding at 3.6 d HRT, phenol and NH 4 þ removal dropped to 58 and 18%, respectively. However, complete phenol removal and 29% NH 4 þ removal were achieved when 8 g NaHCO3/l was added to the artificial wastewater to enhance algal growth. This study confirms the potential of solar-based industrial wastewater treatment based on solar-based UV pretreatment followed by algal-bacterial biodegradation.
Egypt has the highest prevalence of hepatitis C virus (HCV) worldwide. Currently, combined pegylated interferon and ribavirin therapy are the standard treatment. The biological activity of interferon (IFN) is mediated by the induction of intracellular antiviral proteins, such as 2′–5′ oligoadenylate synthetase, and dsRNA-activated protein kinase. IFN-inducible double-stranded RNA-activated protein kinase (PKR) is thought to play a key antiviral role against HCV. Some studies observed that PKR expression was higher in sustained viral responders compared with the non-responders. The PKR is considered as antiviral toward HCV and responsible for IFN’s effect against HCV while others have showed that, there were kinetic results indicate that HCV infection is not altered by reduced levels of PKR, indicating that HCV is resistant to the translational inhibitory effects of the phosphorylated forms of PKR. This study was conducted on 50 consecutive patients with chronic HCV infection (CHC) and 20 healthy controls. All the patients were subjected to clinical and laboratory assessment, abdominal ultrasound, and liver biopsy. Determination of PKR gene quantity by using a real time PCR was done at the baseline and at the end of treatment for all patients and controls. Pre-treatment levels of protein kinase gene were significantly higher in responders in comparison with non-responders (P < 0.001). It was found that 97.06% of patients who were responding to treatment had the expression of protein kinase gene greater than 26 cycle threshold.
Diseases caused by multidrug-resistant (MDR) bacteria continue to challenge physicians and endanger their patients' lives. Polymyxins, including colistin, are the last resort antibiotics to treat serious infections caused by carbapenem-resistant bacteria. The aim of this study is to explore the resistance of Gram negative isolates recovered from 200 clinical specimens to carbapenem and colistin antibiotics, and the prevalence of plasmid-mediated mcr-1 gene in the resistant isolates. Clinical specimens were collected from two teaching hospitals and two private clinical laboratories in Cairo, Egypt. We identified one hundred and thirty isolates as Gram negative. These isolates were screened for their susceptibility to β-lactams antibiotics, carbapenems, colistin, polymyxin B, levofloxacin and amikacin. Thirty isolates were found to be resistant to the tested carbapenems. Of these, five isolates were found to be resistant to both carbapenem and colistin. They were tested for the presence of mcr-1, pmrB and pmrA genes; known to be among the reasons for colistin resistance. One isolate showed the presence of pmrA while three isolates showed the presence of pmrA and pmrB. Only one isolate showed the presence of mcr-1, pmrA and pmrB. This was tested by real time PCR to ensure the activity of this plasmid-mediated gene. Using 16S rRNA sequencing, the isolate showed 100% similarity to Escherichia coli strain K12 (MG1655). Here, we report a carbapenem-resistant and colistin-resistant Escherichia coli strain producing mcr-1gene that is the first to be reported in Egypt between human.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.