The OmcB protein of Chlamydia trachomatis is a cysteine-rich outer membrane polypeptide with important functional, structural and antigenic properties. The entire gene encoding the OmcB protein from C. trachomatis serovar LGV1 was cloned and expressed in Escherichia coli and the full-length protein used to raise polyclonal antibodies. Recombinant OmcB was used to show that OmcB is a surface-exposed protein that functions as a chlamydial adhesin. Infectivity inhibition assays carried out using HeLa cells with serovar LGV1 in the presence of purified anti-OmcB serum showed inhibition of infectivity, suggesting that some of the OmcB was surface exposed. Moreover, using recombinant OmcB in infectivity inhibition assays resulted in 70 % inhibition of infectivity, confirming that OmcB plays a role as an adhesin in C. trachomatis. Furthermore, recombinant OmcB protein bound to the surface of HeLa and Hec1B cells, but binding to glycosaminoglycan (GAG)-deficient cells (pgsA-745 and pgsD-677) was markedly reduced, indicating that OmcB binds to GAG-like receptors on host cells.
We recently showed that OmcB protein from Chlamydia trachomatis serovar LGV1 functions as an adhesin. In this study, we produced Escherichia coli expressing OmcB from serovar E and compared this OmcB to OmcB from serovar LGV1. Infectivity inhibition assays carried out with serovars LGV1 and E of C. trachomatis in the presence of recombinant OmcB showed considerable (~60 %) inhibition of infectivity. In the presence of heparan sulphate, there was significant inhibition (68 %) of adherence of E. coli expressing OmcB from serovar LGV1 only. In a further experiment, recombinant OmcB from serovar LGV1 showed minimal binding to glycosaminoglycan (GAG)-deficient cells, whilst to the same cells, recombinant OmcB from serovar E showed binding equal to that to the wild-type cells. Our experiments strongly suggest that OmcB from serovar E, in contrast to that from serovar LGV1, is not binding to host cells through a GAG-dependent mechanism.
Sulphated glycosaminoglycans, such as heparan sulphate, have been shown to be essential for the infectivity of many organisms. The aims of this study were to verify the role of sulphated glycosaminoglycans in chlamydial infection and to investigate whether they are present on chlamydia or chlamydial host cells. The effect of undersulphation of host cells and chlamydial elementary bodies was examined using sodium chlorate. Also studied was whether any inhibitory effect was reversible. The results strongly suggest that Chlamydia trachomatis does not produce heparan sulphate and that heparan sulphate of the host cell is necessary and sufficient to mediate chlamydial infection. The essential role played by the sulphate constituents of the host-cell glycosaminoglycan in the infectivity of LGV serovars, and to a lesser extent of serovar E, was also confirmed.
Lipopolysaccharide (LPS) is a major surface component of Chlamydia trachomatis, as with all Gram-negative bacteria. The effect of C. trachomatis LPS on C. trachomatis infectivity of human epithelial cells was investigated. C. trachomatis LPS and C. trachomatis LPS antibody significantly reduced infectivity, mostly in a dose-dependent manner. As the structure of LPS in C. trachomatis is simple and consists only of lipid A and 3-deoxy-D-manno-octulosonic acid (Kdo), we investigated whether lipid A or Kdo was inhibitory to chlamydial infectivity. Polymyxin B, as a lipid A inhibitor, and Kdo considerably reduced C. trachomatis infectivity. With all the LPS inhibitors used, there was greater inhibition against serovar E than serovar LGV. These results suggest a role for LPS in chlamydial infectivity. Elucidation of how LPS acts in infectivity and identification of host-cell receptors would help in understanding pathogenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.