Fluoroscopic evaluation of total knee arthroplasty (TKA) has reported sudden anterior translation of the femur relative to the tibia (paradoxical anterior motion) for some cruciate-retaining designs. This motion may be tied to abrupt changes in the femoral sagittal radius of curvature characteristic of traditional TKA designs, as the geometry transitions from a large load-bearing distal radius to a smaller posterior radius which can accommodate femoral rollback. It was hypothesized that a gradually reducing radius may attenuate sudden changes in anterior-posterior motion that occur in mid-flexion with traditional discrete-radius designs. A combined experimental and computational approach was employed to test this hypothesis. A previously developed finite element (FE) model of the Kansas knee simulator (KKS), virtually implanted with multiple implant designs, was used to predict the amount of paradoxical anterior femoral slide during a simulated deep knee bend. The model predicted kinematics demonstrated that incorporating a gradually reducing radius in mid-flexion reduced the magnitude of paradoxical anterior translation between 21% and 68%, depending on the conformity of the tibial insert. Subsequently, both a dual-radius design and a modified design incorporating gradually reducing radii were tested in vitro in the KKS for verification. The model-predicted and experimentally observed kinematics exhibited good agreement, while the average experimental kinematics demonstrated an 81% reduction in anterior translation with the modified design. The FE model demonstrated sufficient sensitivity to appropriately differentiate kinematic changes due to subtle changes in implant design, and served as a useful pre-clinical design-phase tool to improve implant kinematics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.