BackgroundActinomycetes have provided a wealth of bioactive secondary metabolites with interesting activities such as antimicrobial, antiviral and anticancer. The study aims at isolation, characterization and the antimicrobial potentiality of Streptomyces sannanensis SU118 obtained from Phoomdi, a unique habitat of Loktak Lake of Manipur, India.ResultsAn actinomycete strain isolated from Phoomdi soil of Loktak Lake of Manipur, India was identified as Streptomyces sannanensis SU118. It is a Gram-positive filamentous bacterium which exhibits antimicrobial activity only against Gram-positive bacteria, while Gram-negative organisms were not affected. Glucose Soyabean meal broth was found to be the suitable medium for antibiotic production at 28°C for seven days of incubation. The antimicrobial agent produced by the strain was extracted with ethyl acetate as solvent and purified by thin layer chromatography. Screening and bioassay - guided fractionation of the ethyl acetate extract from the culture filtrate led to the isolation of an active potential compound (Rf value 0.56) with λmax 275.0 nm which has got the lowest minimum inhibitory concentration (0.5 μg/ml) against Staphylococcus aureus MTCC 96 and Staphylococcus aureus (clinical isolate), whereas highest (3.0 μg/ml) was recorded against Mycobacterium smegmatis MTCC 6 and Bacillus circulans MTCC 8074.ConclusionThis study has therefore uncovered the potential of exploring virgin untapped habitats in the Indo-Burma biodiversity hot spot region as reservoir of promising antimicrobial metabolite producer. These results highlighted the scope for further characterization of the metabolite and could be a candidate in the generation of new antimicrobial agents.
Background Emergence of extended-spectrum beta-lactamases (ESBLs), AmpC β-lactamases, and metallo-β lactamases (MBL), and their co-existence among members of Enterobacteriaceae pose newer diagnostic and therapeutic challenges. The present study examines the ESBL, AmpC, and MBL production by various phenotypic methods and their co-occurrence among the multidrug-resistant (MDR) Enterobacteriaceae clinical isolates.
Materials and Methods Four hundred non-repetitive Enterobacteriaceae clinical isolates were collected from the Central Referral Hospital, Sikkim. The isolates were used for identification and their antibiotic susceptibility tests were performed according to the Clinical and Laboratory Standard Institute (CLSI) guidelines. ESBL was detected by double-disc synergy test (DDST) and phenotypic confirmatory disc-diffusion test (PCDDT), AmpC detection by AmpC E-test, and boronic acid disc diffusion (BD) test. MBL was detected using the imipenem–imipenem/EDTA disc and carba-NP tests.
Results Around 76% were considered MDR. ESBL was seen in 58% and 50.4% based on DDST and phenotypic confirmation disc-diffusion test (PCDDT), respectively. AmpC was detected in 11.8% and 13.1% using a commercial E-test and boronic acid test, respectively. MBL were identified in 12.8% and 14.8% based on MBL imipenem-EDTA and carba-NP tests, respectively. Co-occurrence of ESBL and AmpC, ESBL and MBL, AmpC and MBL was seen in 5.2%, 11.5%, 1.3%, respectively, whereas a combination of these three β-lactamases was observed in only 0.3% of 304 MDR isolates.
Conclusion The findings highlight a high prevalence of β-lactamases and their co-production among the Enterobacteriaceae, mainly in Klebsiella pneumoniae and Escherichia coli isolates. The study further highlights the necessity to identify the MDR β-lactamases stains for effective therapy in severe as well as mild bacterial infections, thereby enabling to reduce the risk of MDR in hospital and community settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.