BackgroundNanoparticles are small-scale substances (<100 nm) with unique properties. Therefore, nanoparticles pose complex health risk implications. The objective of this study was to detect whether treatment with quercetin (Qur) and/or arginine (Arg) ameliorated nephrotoxicity induced by two different doses of nano zinc oxide (n-ZnO) particles.MethodZnO nanoparticles were administered orally in two doses (either 600 mg or 1 g/Kg body weight/day for 5 conscutive days) to Wister albino rats. In order to detect the protective effects of the studied antioxidants against n-ZnO induced nepherotoxicity, different biochemical parameters were investigated. Moreover, histopathological examination of kidney tissue was performed.ResultsNano zinc oxide-induced nephrotoxicity was confirmed by the elevation in serum inflammatory markers including: tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6); and C-reactive protein (CRP). Moreover, immunoglobulin (IGg), vascular endothelium growth factor (VEGF), and nitric oxide (NO) were significantly increased in rat serum. Serum urea and creatinine levels were also significantly increased in rats intoxicated with n-ZnO particles compared with the control group. Additionally, a significant decrease in the non-enzymatic antioxidant reduced glutathione (GSH) was shown in kidney tissues and serum glucose levels were increased. These biochemical findings were supported by a histopathological examination of kidney tissues, which showed that in the animals that received a high dose of n-ZnO, numerous kidney glomeruli underwent atrophy and fragmentation. Moreover, the renal tubules showed epithelial desquamation, degeneration and necrosis. Some renal tubules showed casts in their lumina. Severe congestion was also observed in renal interstitium. These effects were dose dependent. Cotreatment of rats with Qur and/or Arg along with n-ZnO significantly improved most of the deviated tested parameters.ConclusionsThe data show that Qur has a beneficial effect against n-ZnO oxidative stress and related vascular complications. Also, its combination with Arg proved to be even more effective in ameliorating nano zinc oxide nephrotoxicity.
Although zinc oxide nanoparticles (ZnO-NP) are being used on a wide scale in the world consumer market, their potential hazards on humans remain largely unknown. The present study was aimed at investigating the oral toxicity of ZnO-NP in 2 dose regimen (600 mg/kg and 1 g/kg body weight for 5 consecutive days) in rats. In addition, the protective role of either α-lipoic acid (Lipo) or vitamin E (Vit E) against this cardiotoxic effect of ZnO-NPs was assessed. Results revealed that, co-administration of Lipo (200 mg/Kg body weight) or Vit E (100 mg/Kg body weight) daily for 3 weeks to rats intoxicated with ZnO-NPs (in either of the 2 dose regimen) significantly ameliorated the cardiotoxic effect of these nanoparticles. As, both agents significantly reduced the increase in serum cardiac injury markers including troponin-T, creatine kinase-MB (CK-MB), and myoglobin. Additionally, Lipo and Vit E significantly decreased the increase in serum pro-inflammatory biomarkers level including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP). Moreover, either of the 2 used agents successfully alleviated the alteration in nitric oxide (NO) and vascular endothelial growth factor (VEGF) in ZnO-NPs in sera of intoxicated group. They also significantly reduced the increase in cardiac calcium concentration and the consequent oxidative deoxyribonucleic acid (DNA) damage, as well as the increase in cardiac caspase-3 activity of intoxicated rats. Conclusively, these results indicate that early treatment with either α-lipoic acid or vitamin E may offer protection against cardiac tissue injury induced by the deleterious toxic impacts of ZnO-NPs.
Concerns with the environmental and health risk of widely distributed, commonly used nanoparticles are increasing. As titanium dioxide nanoparticles (TiO 2 NPs) are widely used commercially, their potential toxicity on human health has attracted particular attention. In this paper the in vivo acute toxicity of nano-sized TiO 2 particles (80 nm) to adult rats was investigated before and after treatment with either idebenone or quercetin. Rat groups were orally administered at low (600 mg/kg bw) and a high dose (1 g/kg bw) n-TiO 2 , and the effect of these nanoparticles before and after treatment with either antioxidants was evaluated through measurement of serum tumour necrosis factor (TNF)-α, C-reactive protein, vascular endothelial growth factor (VEGF), immunoglobulin G (IgG), interleukin 6 (Il-6), troponin, myoglobin, creatine kinase-MB (CK-MB) and nitrite levels. In addition, Ca and caspase-3 were measured in the hearts of these animals. DNA damage was also detected using Comet assay. The results showed that both doses of n-TiO 2 caused an elevation in all serum and tissue parameters, which increased with increasing dose. Treatment with either idebenone or quercetin significantly reduced these elevated levels, the improvement being more pronounced with the lower dose. In conclusion, this study aims to give some insight on the toxicity and tissue distribution of orally administered TiO 2 nanoparticles through measurement of an extended set of biochemical parameters in serum and heart tissue to gain information on potential pathological changes after administration of NP-TiO 2. In addition, the protective role of idebenone and quercetin, as therapeutic agents to ameliorate these changes were evaluated.
Background:Lead is a common environmental and occupational pollutant which induced multiorgans dysfunction. The present study was designed to investigate the hepatoprotective effects of turmeric (TUR) and/or vitamin C (Vit-C) alone or together against lead acetate toxicity and to explore novel molecular pathways.Method:Acute hepatotoxicity was induced by lead acetate (100 mg/kg/day, i.p.) in male rats, and the effect of TUR (200 mg/kg/day, orally) and/or Vit-C (250 mg/kg/day, orally) along with lead acetate for 7 days was studied.Results:Lead acetate increased serum alanine transaminase, aspartate transaminase, lactate dehydrogenase, hepatic lipid peroxidation and nitric oxide; while, hepatic superoxide dismutase and glutathione activities were downregulated. Hepatic Bcl-2-associated X (Bax) and B-cell lymphoma-2 (Bcl-2) proteins expressions were altered and hepatic DNA damaged was increased as well. Liver/body weight ratio was decreased. Hematoxylin and eosin demonstrated that lead acetate induced focal areas of massive hepatic degeneration of the hepatocytes. Treatment with both antioxidants ameliorated all the altered parameters and induced marked improvement of liver architecture.Conclusion:The combination of TUR and Vit-C has shown the most protective effects against lead acetate-induced hepatotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.