The dendritic cells (DC) of mouse lymph nodes (LN) were isolated, analyzed for surface markers, and compared with those of spleen. Low to moderate staining of LN DC for CD4 and low staining for CD8 was shown to be attributable to pickup of these markers from T cells. Excluding this artifact, five LN DC subsets could be delineated. They included the three populations found in spleen (CD4+8−DEC-205−, CD4−8−DEC-205−, CD4−8+DEC-205+), although the CD4-expressing DC were of low incidence. LN DC included two additional populations, characterized by relatively low expression of CD8 but moderate or high expression of DEC-205. Both appeared among the DC migrating out of skin into LN, but only one was restricted to skin-draining LN and was identified as the mature form of epidermal Langerhans cells (LC). The putative LC-derived DC displayed the following properties: large size; high levels of class II MHC, which persisted to some extent even in CIITA null mice; expression of very high levels of DEC-205 and of CD40; expression of many myeloid surface markers; and no expression of CD4 and only low to moderate expression of CD8. The putative LC-derived DC among skin emigrants and in LN also showed strong intracellular staining of langerin.
The role of granulocyte-macrophage colony-stimulating factor (GM-CSF) and Flt3 ligand in the in vivo development of Langerhans cells (LC) was assessed, considering both the steady-state levels of LC in the epidermis and the rate of LC recovery after depletion following lipopolysaccharide (LPS) treatment. The density of LC was determined by counting following IA-specific immunofluorescent staining of epidermal sections from mouse ears. LC levels were compared in beta common chain receptor null (beta c(-/-)) mice that fail to respond to GM-CSF interleukin-5 (IL-5), in GM-CSF transgenic mice with elevated GM-CSF levels, and in mice given daily injections of Flt3 ligand. In the steady state, LC levels were increased in GM-CSF transgenic mice and present at reduced levels in beta c(-/-) mice but unchanged in Flt3 ligand-injected mice. Application of LPS to the ears of control BL/6 mice led to an approximately 70% reduction in LC 4 days later, with recovery beginning by day 8 and a return to normal levels by 2 weeks. This recovery was significantly delayed in beta c(-/-) mice and unchanged in Flt3 ligand-injected mice. These results suggest that GM-CSF (but not Flt3 ligand) enhances recruitment/maturation of LC even though GM-CSF is not essential for their formation.
SUMMARYThe purpose of this study was to analyse effects of chromium and/or copper supplementation on immune function in hypercholesterolaemic postmenopausal women. A 2 Â 2 factorial research design was used and 40 subjects were supplemented with 0´394 g lactose, 200 mg Cr, 3´0 mg Cu, or 200 mg Cr and 3´0 mg Cu/d for 12 weeks. A significant interactive effect of Cr and Cu supplementation on lymphocyte proliferation was observed with ConA 50 mg/ml stimulation. After 12 weeks of supplementation, ConA-stimulated (50 mg/ml) lymphocyte proliferation was significantly lower when Cu was added to the Cr supplementation group. Moreover, ConA-stimulated (100 mg/ml) lymphocyte proliferation was significantly lower in the Cu supplementation group compared to the Cr supplementation group after 12 weeks of supplementation. These results suggest that Cu blocks enhancement of lymphocyte proliferation by Cr supplementation and that Cu supplementation has potential suppressive effects on the immune function in these subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.