Due to its excellent long term accuracy, the Boris algorithm is the de facto standard for advancing a charged particle. Despite its popularity, up to now there has been no convincing explanation why the Boris algorithm has this advantageous feature. In this paper, we provide an answer to this question. We show that the Boris algorithm conserves phase space volume, even though it is not symplectic. The global bound on energy error typically associated with symplectic algorithms still holds for the Boris algorithm, making it an effective algorithm for the multi-scale dynamics of plasmas.

Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithm conserves a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially-discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al., which produces five exactly-soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers.The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave.

Particle-in-Cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretizing its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g., 10 9 , degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.

Hamiltonian integration methods for the Vlasov-Maxwell equations are developed by a Hamiltonian splitting technique. The Hamiltonian functional is split into five parts, i.e., the electrical energy, the magnetic energy, and the kinetic energy in three Cartesian components.Each of the subsystems is a Hamiltonian system with respect to the Morrison-MarsdenWeinstein Poisson bracket and can be solved exactly. Compositions of the exact solutions yield Poisson structure preserving, or Hamiltonian, integration methods for the VlasovMaxwell equations, which have superior long-term fidelity and accuracy.

Smoothing functions are commonly used to reduce numerical noise arising from coarse sampling of particles in particle-in-cell (PIC) plasma simulations. When applying smoothing functions to symplectic algorithms, the conservation of symplectic structure should be guaranteed to preserve good conservation properties. In this paper, we show how to construct a variational multi-symplectic PIC algorithm with smoothing functions for the Vlasov-Maxwell system. The conservation of the multi-symplectic structure and the reduction of numerical noise make this algorithm specifically suitable for simulating long-term dynamics of plasmas, such as those in the steady-state operation or long-pulse discharge of a super-conducting tokamak. The algorithm has been implemented in a 6D large scale PIC code. Numerical examples are given to demonstrate the good conservation properties of the multi-symplectic algorithm and the reduction of the noise due to the application of smoothing function.

The gyrocenter dynamics of charged particles in time-independent magnetic fields is a non-canonical Hamiltonian system. The canonical description of the gyrocenter has both theoretical and practical importance. We provide a general procedure of the gyrocenter canonicalization, which is expressed by the series of a small variable ϵ depending only on the parallel velocity u and can be expressed in a recursive manner. We prove that the truncation of the series to any given order generates a set of exact canonical coordinates for a system, whose Lagrangian approximates to that of the original gyrocenter system in the same order. If flux surfaces exist for the magnetic field, the series stops simply at the second order and an exact canonical form of the gyrocenter system is obtained. With the canonicalization schemes, the canonical symplectic simulation of gyrocenter dynamics is realized for the first time. The canonical symplectic algorithm has the advantage of good conservation properties and long-term numerical accuracy, while avoiding numerical instability. It is worth mentioning that explicitly expressing the canonical Hamiltonian in new coordinates is usually difficult and impractical. We give an iteration procedure that is easy to implement in the original coordinates associated with the coordinate transformation. This is crucial for modern large-scale simulation studies in plasma physics. The dynamics of gyrocenters in the dipole magnetic field and in the toroidal geometry are simulated using the canonical symplectic algorithm by comparison with the higher-order non symplectic Runge-Kutta scheme. The overwhelming superiorities of the symplectic method for the gyrocenter system are evidently exhibited.

scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.