Numerous studies demonstrate links between chronic stress and indices of poor health, including risk factors for cardiovascular disease and poorer immune function. Nevertheless, the exact mechanisms of how stress gets ''under the skin'' remain elusive. We investigated the hypothesis that stress impacts health by modulating the rate of cellular aging. Here we provide evidence that psychological stress-both perceived stress and chronicity of stress-is significantly associated with higher oxidative stress, lower telomerase activity, and shorter telomere length, which are known determinants of cell senescence and longevity, in peripheral blood mononuclear cells from healthy premenopausal women. Women with the highest levels of perceived stress have telomeres shorter on average by the equivalent of at least one decade of additional aging compared to low stress women. These findings have implications for understanding how, at the cellular level, stress may promote earlier onset of age-related diseases.psychological stress ͉ telomere length ͉ telomerase ͉ oxidative stress
Telomeres are the protective end-complexes at the termini of eukaryotic chromosomes. Telomere attrition can lead to potentially maladaptive cellular changes, block cell division, and interfere with tissue replenishment. Recent advances in the understanding of human disease processes have clarified the roles of telomere biology, especially in diseases of human aging and in some aging-related processes. Greater overall telomere attrition predicts mortality and aging-related diseases in inherited telomere syndrome patients, and also in general human cohorts. However, genetically caused variations in telomere maintenance either raise or lower risks and progression of cancers, in a highly cancer type-specific fashion. Telomere maintenance is determined by genetic factors and is also cumulatively shaped by nongenetic influences throughout human life; both can interact. These and other recent findings highlight both causal and potentiating roles for telomere attrition in human diseases.
Telomeres are the DNA–protein complexes that protect the ends of eukaryotic chromosomes. The cellular enzyme telomerase counteracts telomere shortening by adding telomeric DNA. A growing body of literature links shorter telomere length and lower telomerase activity with various age-related diseases and earlier mortality. Thus, leukocyte telomere length (LTL) and telomerase activity are emerging both as biomarkers and contributing factors for age-related diseases. However, no clinical study has directly examined telomerase activity and telomere length in different lymphocyte subtypes isolated from the same donors, which could offer insight into the summary measure of leukocyte telomere maintenance. We report the first quantitative data in humans examining both levels of telomerase activity and telomere length in four lymphocyte subpopulations from the same donors—CD4+, CD8+CD28+ and CD8+CD28− T cells and B cells, as well as total PBMCs—in a cohort of healthy women. We found that B cells had the highest telomerase activity and longest telomere length; CD4+ T cells had slightly higher telomerase activity than CD8+CD28+ T cells, and similar telomere length. Consistent with earlier reports that CD8+CD28−T cells are replicatively senescent cells, they had the lowest telomerase activity and shortest telomere length. In addition, a higher percentage of CD8+CD28− T cells correlated with shorter total PBMC TL (r = −0.26, p = 0.05). Interestingly, telomerase activities of CD4+ and CD8+CD28+ T cells from the same individual were strongly correlated (r = 0.55, r < 0.001), indicating possible common mechanisms for telomerase activity regulation in these two cell subtypes. These data will facilitate the understanding of leukocyte aging and its relationship to human health.
BackgroundDepression is associated with an unusually high rate of aging-related illnesses and early mortality. One aspect of “accelerated aging” in depression may be shortened leukocyte telomeres. When telomeres critically shorten, as often occurs with repeated mitoses or in response to oxidation and inflammation, cells may die. Indeed, leukocyte telomere shortening predicts early mortality and medical illnesses in non-depressed populations. We sought to determine if leukocyte telomeres are shortened in Major Depressive Disorder (MDD), whether this is a function of lifetime depression exposure and whether this is related to putative mediators, oxidation and inflammation.MethodologyLeukocyte telomere length was compared between 18 unmedicated MDD subjects and 17 controls and was correlated with lifetime depression chronicity and peripheral markers of oxidation (F2-isoprostane/Vitamin C ratio) and inflammation (IL-6). Analyses were controlled for age and sex.Principal FindingsThe depressed group, as a whole, did not differ from the controls in telomere length. However, telomere length was significantly inversely correlated with lifetime depression exposure, even after controlling for age (p<0.05). Average telomere length in the depressed subjects who were above the median of lifetime depression exposure (≥9.2 years' cumulative duration) was 281 base pairs shorter than that in controls (p<0.05), corresponding to approximately seven years of “accelerated cell aging.” Telomere length was inversely correlated with oxidative stress in the depressed subjects (p<0.01) and in the controls (p<0.05) and with inflammation in the depressed subjects (p<0.05).ConclusionsThese preliminary data indicate that accelerated aging at the level of leukocyte telomeres is proportional to lifetime exposure to MDD. This might be related to cumulative exposure to oxidative stress and inflammation in MDD. This suggest that telomere shortening does not antedate depression and is not an intrinsic feature. Rather, telomere shortening may progress in proportion to lifetime depression exposure.
SummaryWe previously reported that psychological stress is linked to and possibly accelerates cellular aging, as reflected by lower PBMC telomerase and shortened telomeres. Psychological stress is a major risk factor for cardiovascular disease (CVD), with multiple behavioral and physiological mediators. Telomere shortness has been associated with CVD, but the relationship between low telomerase activity, a potential precursor to telomere shortening, and CVD risk factors has not been examined in humans. Here we examine whether telomere length and telomerase in leukocytes are associated with physiological signs of stress arousal and CVD risk factors in 62 healthy women. Low telomerase activity in leukocytes was associated with exaggerated autonomic reactivity to acute mental stress and elevated nocturnal epinephrine. Further, low telomerase activity was associated with the major risk factors for CVD -smoking, poor lipid profile, high systolic blood pressure, high fasting glucose, greater abdominal adiposity-as well as to a composite Metabolic Syndrome variable. Telomere length was related only to elevated stress hormones (catecholamines and cortisol). Thus, we propose that low leukocyte telomerase constitutes an early marker of CVD risk, possibly preceding shortened telomeres, that results in part from chronic stress arousal. Possible cellular mechanisms by which low telomerase may link stress and traditional risk factors to CVD are discussed. Psychoneuroendocrinology (2006) These findings may implicate telomerase as a novel and important mediator of the effects of psychological stress on physical health and disease. Q
Telomere length/DNA content has been measured in epidemiological/clinical settings with the goal of testing a host of hypotheses related to the biology of human aging, but often the conclusions of these studies have been inconsistent. These inconsistencies may stem from various reasons, including the use of different telomere length measurement techniques. Here, we report the first impartial evaluation of measurements of leukocyte telomere length by Southern blot of the terminal restriction fragments and quantitative PCR (qPCR) of telomere DNA content, expressed as the ratio of telomeric product (T)/single copy gene (S) product. Blind measurements on the same samples from 50 donors were performed in two independent laboratories on two different occasions. Both the qPCR and Southern blots displayed highly reproducible results as shown by r values > 0.9 for the correlations between results obtained by either method on two occasions. The inter-assay CV measurement for the qPCR was 6.45%, while that of the Southern blots was 1.74%. The relation between the results generated by Southern blots versus those generated by qPCR deviated from linearity. We discuss the ramifications of these findings with regard to measurements of telomere length/DNA content in epidemiological/clinical circumstances.
BACKGROUND This study examined the effects of brief daily yogic meditation on mental health, cognitive functioning, and immune cell telomerase activity in family dementia caregivers with mild depressive symptoms. METHODS Thirty-nine family dementia caregivers (mean age 60.3 years old (SD=10.2)) were randomized to practicing Kirtan Kriya or listening to relaxation music for 12 minutes per day for eight weeks. The severity of depressive symptoms, mental and cognitive functioning were assessed at baseline and follow-up. Telomerase activity in peripheral blood mononuclear cells (PMBC) was examined in peripheral PBMC pre- and post-intervention. RESULTS The meditation group showed significantly lower levels of depressive symptoms and greater improvement in mental health and cognitive functioning compared to the relaxation group. In the meditation group, 65.2% showed 50% improvement on the Hamilton Depression Rating scale and 52% of the participants showed 50% improvement on the Mental Health Composite Summary score (MCS) of the SF-36 scale; compared to 31.2% and 19% respectively in the relaxation group (pp<0.05). The meditation group showed 43% improvement in telomerase activity compared to 3.7% in the relaxation group (p=0.05). CONCLUSION This pilot study found that brief daily meditation practices by family dementia caregivers can lead to improved mental and cognitive functioning, and lower levels of depressive symptoms. This improvement is accompanied by an increase in telomerase activity suggesting improvement in stress-induced cellular aging. These results need to be confirmed in a larger sample.
The purpose of this study was to examine the association between socioeconomic status (SES) and leukocyte telomere length (LTL) – a marker of cell aging that has been linked to stressful life circumstances – in a nationally representative, socioeconomically and ethnically diverse sample of US adults aged 20–84. Using data from the National Health and Nutrition Examination Survey (NHANES), 1999–2002, we found that respondents who completed less than a high school education had significantly shorter telomeres than those who graduated from college. Income was not associated with LTL. African-Americans had significantly longer telomeres than whites, but there were no significant racial/ethnic differences in the association between education and telomere length. Finally, we found that the association between education and LTL was partially mediated by smoking and body mass index but not by drinking or sedentary behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.