The Internet of Things (IoT) is, at this moment, one of the most promising technologies that has arisen for decades. Wireless Sensor Networks (WSNs) are one of the main pillars for many IoT applications, insofar as they require to obtain context-awareness information. The bibliography shows many difficulties in their real implementation that have prevented its massive deployment. Additionally, in IoT environments where data producers and data consumers are not directly related, compatibility and certification issues become fundamental. Both problems would profit from accurate knowledge of the internal behavior of WSNs that must be obtained by the utilization of appropriate tools. There are many ad-hoc proposals with no common structure or methodology, and intended to monitor a particular WSN. To overcome this problem, this paper proposes a structured three-layer reference model for WSN Monitoring Platforms (WSN-MP), which offers a standard environment for the design of new monitoring platforms to debug, verify and certify a WSN’s behavior and performance, and applicable to every WSN. This model also allows the comparative analysis of the current proposals for monitoring the operation of WSNs. Following this methodology, it is possible to achieve a standardization of WSN-MP, promoting new research areas in order to solve the problems of each layer.
This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper.
Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.
The environment in livestock buildings must be controlled to ensure the health and welfare of both workers and animals, as well as to restrict the emission of pollutants to the atmosphere. Among the pollutants generated inside these premises, carbon dioxide (CO2) is of great interest in terms of animal welfare and ventilation control. The use of inexpensive sensors means that complete systems can be designed with a number of sensors located around the building. This paper describes a study of the suitability of multipoint simultaneous CO2 sensors operating in a wireless sensor network, which was found to operate satisfactorily under laboratory conditions and was found to be the best alternative for these applications. The sensors showed a highly linear response to CO2 concentrations, ranging from 500 to 5000 ppm. However, individual sensor response was found to differ, which made it necessary to calibrate each one separately. Sensor precision ranged between 80 and 110 ppm CO2, and sensor response to register a 95% change in concentration was estimated at around 5 min. These features mean this type of sensor network can be used to monitor animal welfare and also for environmental control in poorly ventilated livestock premises. According to the tests conducted in this study, a temporal drift may occur and therefore a regular calibration of sensors would be needed.
Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system—such as a wireless sensor network (WSN)—the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.