Heterostructured catalysts are hybrid materials that contain interfaces between their constituents formed through combinations of multiple solid‐state materials. The presence of multiple constituents institutes a synergistic effect that endows the catalyst with superior performance and appreciable potential in a diverse range of catalytic applications, including electrocatalytic and photocatalytic reduction of carbon dioxide. These promising catalysts can support a feasible method for large‐scale processing of valuable carbonaceous feedstock or fuel generation and alleviation of atmospheric carbon dioxide levels. Such technologies will serve as the much‐needed remedy for the global energy and environmental crisis. A broad spectrum of recently developed heterostructured catalysts pertaining to electrocatalytic and photocatalytic carbon dioxide reduction is evaluated. The insights included are of relevance to refresh fundamentals pertaining to the electron transfer processes leading to carbon dioxide reduction and the mechanistic reduction pathways yielding a possible multitude of carbonaceous products. Detailed discussions provide a rational understanding of how the hybrid and resultant properties from various combinations are useful in enhancing catalytic function. Lastly, the performance profiles of various catalyst structures together with modification strategies employed are of interest to highlight the current challenges to and directions for future catalyst development.
Reversible oxygen reactions in Zn–air batteries require cost‐effective and highly‐active bifunctional electrocatalysts to substitute traditional noble‐metal based catalysts. Herein, a new and promising electrocatalytic material, ternary CoIn2S4 thiospinel, is demonstrated for effectively catalyzing oxygen reduction and oxygen evolution reactions (ORR and OER) with S‐doped reduced graphene oxide (S‐rGO) as an electronic conductor. Compared with Co9S8/S‐rGO (without In doping), the newly developed CoIn2S4/S‐rGO reveals superior electrocatalytic properties for the ORR (half‐wave potential of 0.83 V) and OER (overpotential of 0.37 V at 10 mA cm−2), demonstrating that the introduction of In can promote the reversible oxygen electrode reactions of CoIn2S4. The superior experimentally‐observed electrocatalytic properties are corroborated via density function theory investigations. Meanwhile, the synergistic improvements in the bifunctional activities resulting from the combination of CoIn2S4 and S‐rGO are also confirmed. As a proof of concept, home‐made Zn–air cells are assembled with CoIn2S4/S‐rGO as an air‐cathode. The developed Zn–air cells exhibit a high peak power density (133 mW cm−2) with an energy density of 951 Wh kgZn−1 and robust cycling stability over 150 cycles for 50 h, exceeding of those commercial Pt/C+RuO2 which highlights the practical viability of CoIn2S4/S‐rGO for rechargeable Zn–air batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.