Summary 1.Arguably the most important and elusive component of host-parasite models is the transmission function. Considerable empirical and theoretical work has focused on determining the correct formulation of this function although, to date, there has been little attempt to combine these studies to develop general insights into how observed transmission rates affect host-parasite dynamics. 2. Here, estimates of transmission rates from a range of host-parasite systems in the literature are described using a phenomenological function which takes into account how transmission varies with host and parasite densities. This function is placed in the appropriate model framework to determine the consequences of the observed transmission rates for each system. 3. All of the parasites had decreasing per capita transmission rates with increasing parasite densities suggesting that parasites tend to saturate at high densities, either as hosts become limiting or due to heterogeneities amongst the host population. In terms of the responses to host density, the parasites fell into two groups: those with increasing or decreasing transmission rates. This dichotomy was due to the biology of the organisms; the former group infect through cannibalism, which increased at high densities as the individuals became stressed, whereas the latter group infected through free-living stages, resulting in a form of spatial structuring reducing the number of hosts available for infection. 4. A metapopulation model was developed where hosts and parasites interacted in discrete patches according to the appropriate transmission function, with neighbouring patches linked by dispersal. The model suggested that small-scale, localized transmission events can drive large-scale epizootics at the metapopulation level. This emphasizes the importance of correctly describing and quantifying the transmission function at the individual level. 5. Traditionally, the formulation of the transmission function has depended on the scale of observation. This work shows that transmission should be considered from the viewpoint of the organisms concerned. Observed transmission rates are a consequence of the biology of the individuals meaning it should be possible to develop a priori hypotheses concerning the nature of the transmission function from a basic understanding of the life history of the organisms concerned.
We demonstrate changes over time in the spatial and temporal dynamics of an herbivorous small rodent by analyzing time series of population densities obtained at 21 locations on clear cuts within a coniferous forest in Britain from 1984 to 2004. Changes had taken place in the amplitude, periodicity, and synchrony of cycles and density-dependent feedback on population growth rates. Evidence for the presence of a unidirectional traveling wave in rodent abundance was strong near the beginning of the study but had disappeared near the end. This study provides empirical support for the hypothesis that the temporal (such as delayed density dependence structure) and spatial (such as traveling waves) dynamics of cyclic populations are closely linked. The changes in dynamics were markedly season specific, and changes in overwintering dynamics were most pronounced. Climatic changes, resulting in a less seasonal environment with shorter winters near the end of the study, are likely to have caused the changes in vole dynamics. Similar changes in rodent dynamics and the climate as reported from Fennoscandia indicate the involvement of large-scale climatic variables.
Summary1. The nematode Steinernema feltiae has been developed commercially as a biocontrol agent and is successful in controlling sciarid flies in mushroom houses. We used a simple model developed in parallel with a series of field trials, to optimize the application strategy of the nematode. 2. The first field trial provided life-history parameter estimates for both the sciarid flies and the nematodes and showed there to be substantial levels of nematode recycling, leading to high levels of control. Crucially, the field trial showed that by splitting the application into two, and applying half the nematodes at day 0 and half at day 7, the overall number of nematodes (dose) could be substantially reduced from currently recommended levels without sacrificing control success. 3. The model confirmed that there should be a benefit in splitting the dose, if the second application is timed to coincide with the peak in numbers of highly susceptible sciarid larvae. Importantly, the model provided insight into the dynamics of the sciarid larvae, even though the original data set only recorded adult fly numbers. 4. Using a split dose, optimally timed, the model suggested that total doses could be reduced by up to 75% and still achieve control comparable to that found with currently recommended dosages. The timing of the second application of nematodes was crucial in determining the level of control. 5. The model predictions were validated against a second independent field trial with considerably lower fly densities. Even under these different conditions, the predictions were accurate, indicating the robustness of the modelling approach. 6. To date models have rarely provided genuine practical advice to applied agriculturists and biocontrol practitioners. This study shows how a simple model developed in parallel with replicated field trials leads to a better understanding of the biological processes underlying successful control, resulting in improvements in recommended application strategies.
Summary1. Entomopathogenic nematodes belonging to the families Heterorhabditidae and Steinernematidae are lethal obligate parasites of a wide range of invertebrate species. These nematodes exhibit many characteristics that make them ideal candidates as biological control agents of insect pests (rapid host death, high reproductive rates, easily mass-reared in vitro, easy application techniques). 2. However, at present, the number of pest species to which these nematodes are applied successfully is small. Clearly, there is a need to develop existing knowledge of the nematode into a more complete understanding of the nematode±pest system as a whole. 3. To consider the potential of entomopathogenic nematodes as biological control agents, we adopted a generalized analytical modelling approach and, using realistic parameter estimates, determined the conditions under which these nematodes can regulate a pest population. 4. Stability analyses suggested that entomopathogenic nematodes may not be capable of regulating a host population to a stable equilibrium. Long-term persistence of the host and nematode population is unlikely, due to the highly destabilizing eects of the parasite±host relationship. As such, these nematodes may be better suited to short-term control through inundative application techniques rather than long-term regulation. 5. This preliminary generalized model highlights areas where further work is needed. This includes estimation of the probability of nematode infection in the ®eld, the eect of host size on the transmission cycle and the in¯uence of spatial heterogeneity on stability.
Previous studies have indicated that between 60 and 80 % of a population of entomopathogenic nematodes do not infect their insect hosts at any one period in time. Two hypotheses explain this behaviour : the first that there is a subpopulation of non-infectious nematodes and the second that the non-infectious group is created by inhibitory cues derived from infected insects. Through an experimental approach with the Galleria mellonella-Steinernema feltiae system we show that both mechanisms operate together. When conditions for infection were optimized, the sum of individual infection behaviours was similar to the number infecting as a population, implying observed infection rates are driven by intrinsic mechanisms. In addition, there was evidence that an infected host released a chemical cue into the environment which inhibited subsequent levels of infection. This degree of inhibition was independent of the number of infecting nematodes. Both these mechanisms are dynamic, so the observed proportion of infectious nematodes depended heavily on the time of exposure. The implications of these findings for both the design of laboratory trials and the use of entomopathogenic nematodes in biological control are discussed.Key words : entomopathogenic nematodes, Steinernema feltiae, subpopulation, inhibitory cue, biological control. Entomopathogenic nematodes are used as biological control agents of insect soil pests such as sciarid mushroom flies (Lycoriella spp.) and the black vine weevil (Otiorhynchus sulcatus). Nematodes are typically applied in high numbers, for example 3 million infective juveniles per square metre are recommended to control the mushroom sciarid fly (MicroBio, UK). Although such a large number of nematodes are used to protect crops, laboratory studies have shown that the majority of the freeliving larvae are not infective (Bednarek & Nowicki, 1986 ; Fan & Hominick, 1991 a ; Bohan & Hominick, 1995 a, b, 1996, 1997 Glazer, 1997). The aim of this study is to understand the infection process that causes this phenomenon.Following the work of Bednarek & Nowicki (1986) two hypotheses have arisen in the literature to describe the invasion strategies of these nematodes. The first states that infective juveniles can be divided into two subpopulations where one is infective and the other is not. To demonstrate this Bohan & Hominick (1995 a, b, 1996 showed that the overall proportion of the nematode Steinernema feltiae (Filipjev) infecting in a given time-period did not change and never exceeded 40 %, even when the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.