A hydrophobic CO
2
physisorbent
Most materials for carbon dioxide (CO
2
) capture of fossil fuel combustion, such as amines, rely on strong chemisorption interactions that are highly selective but can incur a large energy penalty to release CO
2
. Lin
et al
. show that a zinc-based metal organic framework material can physisorb CO
2
and incurs a lower regeneration penalty. Its binding site at the center of the pores precludes the formation of hydrogen-bonding networks between water molecules. This durable material can preferentially adsorb CO2 at 40% relative humidity and maintains its performance under flue gas conditions of 150°C. —PDS
Recent progress in phosphonate and sulfonate MOFs is reviewed with an emphasis on open frameworks. These two ligating functionalities are paired due to their structural analogy but the review will show that their differences likely outweigh their similarities when it comes to their framework structures and properties. Examples that are highlighted focus on new routes to open structures, demonstrations of porosity and functionality, and examples with dynamic structures. This critical review is geared to researchers interested in designing open framework solids (134 references).
Hydrogen is an essential component in many industrial processes. As a result of the recent increase in the development of shale gas, steam reforming of shale gas has received considerable attention as a major source of H2, and the more efficient use of hydrogen is strongly demanded. Palladium is well known as a hydrogen-storage metal and an effective catalyst for reactions related to hydrogen in a variety of industrial processes. Here, we present remarkably enhanced capacity and speed of hydrogen storage in Pd nanocrystals covered with the metal-organic framework (MOF) HKUST-1 (copper(II) 1,3,5-benzenetricarboxylate). The Pd nanocrystals covered with the MOF have twice the storage capacity of the bare Pd nanocrystals. The significantly enhanced hydrogen storage capacity was confirmed by hydrogen pressure-composition isotherms and solid-state deuterium nuclear magnetic resonance measurements. The speed of hydrogen absorption in the Pd nanocrystals is also enhanced by the MOF coating.
Metal-organic framework (MOF) materials are a nontraditional route to ion conductors, but their crystallinity can give insight into molecular-level transport mechanisms. However, some MOFs can be structurally compromised in humid environments. A new 3D metal-organic framework, PCMOF-5, is reported which conducts protons above 10(-3) S/cm at 60 °C and 98% relative humidity. The MOF contains free phosphonic acid groups, shows high humidity stability, and resists swelling in the presence of hydration. Channels filled with crystallographically located water and acidic groups are also observed.
A new phosphonate metal-organic framework (MOF) with a layered motif but not that of the classical hybrid inorganic-organic solid is presented. Zn, henceforth denoted as PCMOF-3, contains a polar interlayer lined with Zn-ligated water molecules and phosphonate oxygen atoms. These groups serve to anchor free water molecules into ordered chains, as observed by X-ray crystallography. The potential for proton conduction via the well-defined interlayer was studied by 2 H solid-state NMR spectroscopy and AC impedance spectroscopy. The proton conductivity in H 2 was measured as 3.5 × 10 -5 S cm -1 at 25 °C and 98% relative humidity. More interestingly, an Arrhenius plot gave a low activation energy of 0.17 eV for proton transfer, corroborating the solid-state NMR data that showed exchange between all deuterium sites in the D 2 O analogue of PCMOF-3, even at -20 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.