The purpose of this study was to determine the feasibility of applying accelerated in vitro release testing to correlate or predict long-term in vitro release of leuprolide poly(lactideco-glycolide) microspheres. Peptide release was studied using a dialysis technique at 37°C and at elevated temperatures (50°C-60°C) in 0.1M phosphate buffered saline (PBS) pH 7.4 and 0.1M acetate buffer pH 4.0. The data were analyzed using a modification of the Weibull equation. Peptide release was temperature dependent and complete within 30 days at 37°C and 3 to 5 days at the elevated temperatures. In vitro release profiles at the elevated temperatures correlated well with release at 37°C. The shapes of the release profiles at all temperatures were similar. Using the modified Weibull equation, an increase in temperature was characterized by an increase in the model parameter, α, a scaling factor for the apparent rate constant. Complete release at 37°C was shortened from 30 days to 5 days at 50°C, 3.5 days at 55°C, 2.25 days at 60°C in PBS pH 7.4, and 3 days at 50°C in acetate buffer pH 4.0. Values for the model parameter β indicated that the shape of the release profiles at 55°C in PBS pH 7.4 (2.740) and 50°C in 0.1M acetate buffer pH 4.0 (2.711) were similar to that at 37°C (2.677). The E a for hydration and erosion were determined to be 42.3 and 19.4 kcal/mol, respectively. Polymer degradation was also temperature dependent and had an E a of 31.6 kcal/mol. Short-term in vitro release studies offer the possibility of correlation with long-term release, thereby reducing the time and expense associated with longterm studies. Accelerated release methodology could be useful in the prediction of long-term release from extended release microsphere dosage forms and may serve as a quality control tool for the release of clinical or commercial batches.
The objective of this study was to characterize the stability of KSL-W, an antimicrobial decapeptide shown to inhibit the growth of oral bacterial strains associated with caries development and plaque formation, and its potential as an antiplaque agent in a chewing gum formulation. KSL-W formulations with or without the commercial antibacterial agent cetylpyridinium chloride (CPC) were prepared. The release of KSL-W from the gums was assessed in vitro using a chewing gum apparatus and in vivo by a chew-out method. A reverse-phase high-performance liquid chromatography method was developed for assaying KSL-W. Raw material stability and temperature and pH effects on the stability of KSL-W solutions and interactions of KSL-W with tooth-like material, hydroxyapatite discs, were investigated. KSL-W was most stable in acidic aqueous solutions and underwent rapid hydrolysis in base. It was stable to enzymatic degradation in human saliva for 1 hour but was degraded by pancreatic serine proteases. KSL-W readily adsorbed to hydroxyapatite, suggesting that it will also adsorb to the teeth when delivered to the oral cavity. The inclusion of CPC caused a large increase in the rate and extent of KSL-W released from the gums. The gum formulations displayed promising in vitro/in vivo release profiles, wherein as much as 90% of the KSL-W was released in a sustained manner within 30 minutes in vivo. These results suggest that KSL-W possesses the stability, adsorption, and release characteristics necessary for local delivery to the oral cavity in a chewing gum formulation, thereby serving as a novel antiplaque agent.
In this study, four PLGA microsphere formulations of Olanzapine were characterized on the basis of their in vitro behavior at 37°C, using a dialysis based method, with the goal of obtaining an IVIVC. In vivo profiles were determined by deconvolution (Nelson-Wagner method) and using fractional AUC. The in vitro and in vivo release profiles exhibited the same rank order of drug release. Further, in vivo profiles obtained with both approaches were nearly superimposable, suggesting that fractional AUC could be used as an alternative to the Nelson-Wagner method. A comparison of drug release profiles for the four formulations revealed that the in vitro profile lagged slightly behind in vivo release, but the results were not statistically significant (P < 0.0001). Using the four formulations that exhibited different release rates, a Level A IVIVC was established using the deconvolution and fractional AUC approaches. A nearly 1 : 1 correlation (R
2 > 0.96) between in vitro release and in vivo measurements confirmed the excellent relationship between in vitro drug release and the amount of drug absorbed in vivo. The results of this study suggest that proper selection of an in vitro method will greatly aid in establishing a Level A IVIVC for long acting injectables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.