Recently, insects have received increased attention as an important source of sustainable raw materials for animal feed, especially in fish, poultry, and swine. In particular, the most promising species are represented by the black soldier fly (Hermetia illucens, HI), the yellow mealworm (Tenebrio molitor, TM), and the common house fly (Musca domestica, MD). Although rapid development is expected, insects remain underutilized in the animal feed industry mainly due to technical, financial, and regulatory barriers. In addition, few works have analyzed consumer and stakeholder points of view towards the use of insects as animal feed. In this article, we summarize the main findings of this body of research and provide a discussion of consumer studies regarding the consumption of animals fed with insects. Our review suggests that consumer acceptance will not be a barrier towards the development of this novel protein industry. Furthermore, we conclude that it will be of interest to understand whether the use of this more sustainable feed source might increase consumer willingness to pay for animal products fed with insects and whether the overall acceptability, from a sensory point of view, will be perceived better than conventional products. Finally, the main challenges of the feed farming industry are addressed.
BackgroundThe present study has evaluated the effects of different inclusion levels of a partially defatted black soldier fly (Hermetia illucens L.; HI) larva meal on the growth performance, blood parameters and gut morphology of broiler chickens. A total of 256 male broiler chickens (Ross 308) were reared from d 1 to d 35 and assigned to 4 dietary treatments (8 replicates/treatment and 8 birds/replicate). HI larva meal was included at increasing levels (0, 5%, 10% and 15%; HI0, HI5, HI10 and HI15, respectively) in isonitrogenous and isoenergetic diets formulated for 3 feeding phases: starter (1–10 d), growing (10–24 d) and finisher (24–35 d). Two birds per pen were slaughtered at d 35 and morphometric investigations and histopathological alterations were performed.ResultsThe live weight (LW) showed linear and quadratic responses to increasing HI larva meal (maximum for HI10 group). Average daily gain (ADG) showed a linear and quadratic responses to HI meal (maximum for HI10 group) during starter and growing periods. A linear decrease was observed for ADG during the finisher period. The daily feed intake (DFI) showed a linear and quadratic effect during the starter period (maximum for HI10 group). Linear and quadratic responses were observed for the feed conversion ratio (FCR) in the growing period and for the whole period of the experiment. The FCR showed a linear response in the finisher period (maximum for HI15). No significant effects were observed for the blood and serum parameters, except for the phosphorus concentration, which showed linear and quadratic responses as well as glutathione peroxidase (GPx) activity, the latter of which showed a linear response. The HI15 birds showed a lower villus height, a higher crypt depth and a lower villus height-to-crypt depth ratio than the other groups.ConclusionsIncreasing levels of dietary HI meal inclusion in male broiler chickens may improve the LW and DFI during the starter period, but may also negatively affect the FCR and gut morphology, thus suggesting that low levels may be more suitable. However, no significant effects on the haematochemical parameters or histological findings were observed in relation to HI meal utilization.
In 2018, the industrial compound feed production throughout the world was 1.103 metric billion tons, which was an increase of 3% compared to 2017. In order to meet the needs of the increasing population, a further increment in compound feed production is necessary. Conventional protein sources are no longer suitable to completely satisfy the increment of feed production in a sustainable way. Insects are one of the most promising options, due to their valuable nutritional features. This paper reviews the state-of-the-art of research on the use of insect meals and oils in aquatic, avian and other animal species diets, focusing mainly on the effects on digestibility, performance and product quality. In general, insect-derived product digestibility is affected by the insect species, the inclusion levels and by the process. Sometimes, the presence of chitin can lead to a decrease in nutrient digestibility. The same considerations are true for animal performance. As far as product quality is concerned, a dramatic effect of insect products has been recorded for the fatty acid profile, with a decrease in valuable n3 fatty acids. Sensory analyses have reported no or slight differences. Insect-derived products seem to be a good alternative to conventional feed sources and can make an important contribution to the sustainable development of the livestock industry.
Insects are currently being considered as a novel protein source for animal feeds, because they contain a large amount of protein. The larvae of Tenebrio molitor (TM) have been shown to be an acceptable protein source for broiler chickens in terms of growth performance, but till now, no data on histological or intestinal morphometric features have been reported. This study has had the aim of evaluating the effects of dietary TM inclusion on the performance, welfare, intestinal morphology and histological features of free-range chickens. A total of 140 medium-growing hybrid female chickens were free-range reared and randomly allotted to two dietary treatments: (i) a control group and (ii) a TM group, in which TM meal was included at 75 g/kg. Each group consisted of five pens as replicates, with 14 chicks per pen. Growth performance, haematological and serum parameters and welfare indicators were evaluated, and the animals were slaughtered at the age of 97 days. Two birds per pen (10 birds/treatment) were submitted to histological (liver, spleen, thymus, bursa of Fabricius, kidney, heart, glandular stomach and gut) and morphometric (duodenum, jejunum and ileum) investigations. The inclusion of TM did not affect the growth performance, haematological or serum parameters. The morphometric and histological features were not significantly affected either, thus suggesting no influence on nutrient metabolization, performance or animal health. Glandular stomach alterations (chronic flogosis with epithelial squamous metaplasia) were considered paraphysiological in relation to free-range farming. The observed chronic intestinal flogosis, with concomitant activation of the lymphoid tissue, was probably due to previous parasitic infections, which are very frequently detected in free-range chickens. In conclusion, the findings of this study show that yellow mealworm inclusion does not affect the welfare, productive performances or morphological features of free-range chickens, thus confirming that TM can be used safely in poultry diets.
This study evaluated the effects of Tenebrio molitor (TM) larvae meal inclusion in diets for broilers. A total of 160 male broiler chicks (Ross 708) at one-day of age were randomly allotted to four dietary treatments: a control (C) group and three TM groups, in which TM meal was included at 50 (TM5), 100 (TM10), and 150 (TM15) g/kg, respectively. The experimental diets were isonitrogenous and isoenergetic. Each group consisted of five pens as replicates (8 chicks/pen). After the evaluation of growth performance and haematochemical parameters, the animals were slaughtered at 53 days and carcass traits were recorded. Morphometric investigations were performed on duodenum, jejunum, and ileum and histopathological alterations were assessed for liver, spleen, thymus, bursa of Fabricius, kidney, and heart. The live weight (LW) showed a linear (12 and 25 days, P < 0.001 and P < 0.05, maximum with TM15 and TM10) and quadratic (53 days, P < 0.05, maximum with TM5) response to dietary TM meal inclusion. A linear (1 to 12 and 12 to 25 days, P < 0.001, maximum with TM15) and quadratic (12 to 25 days, P = 0.001, maximum with TM15) effect was also observed for the daily feed intake (DFI). The feed conversion ratio (FCR) showed a linear response (25 to 53 and 1 to 53 days, P = 0.001 and P < 0.05, maximum with TM15). Haematological and serum biochemical traits, carcass traits and histopathological findings were not affected by dietary TM meal inclusion (P > 0.05). TM15 birds showed lower villus height (P < 0.05), higher crypt depth (P < 0.05), and lower villus height to crypt depth ratio (P = 0.001) compared with C and TM5. In conclusion, increasing levels of dietary TM meal inclusion in male broiler chickens may improve body weight and feed intake, but negatively affect feed efficiency and intestinal morphology, thus suggesting that low levels may be more suitable. However, no effect on haematochemical parameters, carcass traits, and histological findings were observed in relation to TM meal utilization.
BackgroundGut health in poultry depends on the balance between the host, intestinal microbiota, intestinal microscopic features and diet. The effects of insect meal (a promising alternative protein source for poultry feed) on chicken gut morphology have recently been reported, but no data about intestinal microbiota and mucin composition modulation are available. The present study evaluated the effects of dietary Tenebrio molitor (TM) meal inclusion on gut health of free-range chickens by intestinal microbiota, morphology and mucin composition characterization.ResultsOne hundred forty female medium-growing hybrids were divided into 2 dietary treatments (control feed [C] and 7.5% TM inclusion, with 5 replicate pens/treatment and 14 birds/pen) and slaughtered at 97 days of age (2 birds/pen for a total of 10 chickens/diet). The gut microbiota assessment on cecal content samples by 16S rRNA amplicon based sequencing showed higher alpha (Shannon, P < 0.05) and beta (Adonis and ANOSIM, P < 0.001) diversity in birds fed TM diet than C. In comparison with C group, TM birds displayed significant increase and decrease, respectively, of the relative abundances of Firmicutes and Bacteroidetes phyla, with higher Firmicutes:Bacteroidetes ratios (False Discovery Rate [FDR] < 0.05). The relative abundance of Clostridium, Oscillospira, Ruminococcus, Coprococcus and Sutterella genera was higher in TM chickens than C (FDR < 0.05). On the contrary, TM birds displayed significant decrease of the relative abundance of Bacteroides genus compared to the C group (FDR < 0.05). Gut morphology evaluation by morphometric analysis on small intestine revealed similar villus height, crypt depth and villus height to crypt depth ratio between C and TM birds. Characterization of gut mucin composition by periodic-acid Schiff, Alcian Blue pH 2.5 and high iron diamine staining on small and large intestine showed unaffected mucin staining intensity in TM chickens when compared to C group.ConclusionsDietary TM meal inclusion may positively modulate the gut microbiota of the free-range chickens without influencing the intestinal morphology and mucin composition. Since the rapid growth of chickens directly depends on morphological and functional integrity of the digestive tract, the gut health assessment by a post mortem multidisciplinary approach appears to be fundamental.Electronic supplementary materialThe online version of this article (10.1186/s12917-018-1690-y) contains supplementary material, which is available to authorized users.
Background The aim of this trial was to investigate the effects of different inclusion levels of a partially defatted black soldier fly (BSF, Hermetia illucens L.) larva meal on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features of piglets. A total of 48 newly weaned piglets were individually weighed (initial body weight (IBW): 6.1 ± 0.16 kg) and randomly allocated to 3 dietary treatments (4 boxes as replicates/treatment and 4 animals/box). BSF larva meal was included at increasing levels (0% [BSF0], 5% [BSF5] and 10% [BSF10]) in isonitrogenous and isoenergetic diets formulated for two feeding phases: I (from d 1 to d 23) and II (from d 24 to d 61). The weight gain (WG), average daily gain (ADG), average daily feed intake (ADFI) and feed conversion ratio (FCR) were calculated for each feeding phase and for the whole trial. The haematochemical parameters and nutrient digestibility of the piglets were also evaluated. A total of 3 piglets per box were slaughtered on d 61 and the slaughtered piglets were submitted to morphometric investigations and histopathological examinations. Results No overall significant differences were observed for growth performance ( P > 0.05), except for the ADFI of phase II, which showed a linear response to increasing BSF meal levels ( P < 0.05, maximum for the BSF10 group). Dietary BSF meal inclusion did not significantly influence the blood profile, except as far as monocytes and neutrophils are concerned, and these showed a linear and quadratic response, respectively, to increasing BSF meal levels ( P < 0.05, maximum for the BSF10 and BSF5 groups, respectively). On the other hand, the nutrient digestibility, gut morphology and histological features were not affected by dietary BSF meal inclusion ( P > 0.05). Conclusions The obtained results show that a partially defatted BSF larva meal can be used as a feed ingredient in diets for weaned piglets without negatively affecting their growth performance, nutrient digestibility, blood profile, gut morphology or histological features.
49The aim of the present study was to evaluate the animal 50 performance, haematochemical parameters, intestinal 51 morphology and histological features of broiler chickens fed 52 diets including Tenebrio molitor (TM) larvae meal. A total of 53 160 female broiler chicks (Ross 708) at one-day of age were 54 randomly allotted to four dietary treatments: a control (C) 55 group and three TM groups, in which TM meal was included at 56 50, 100 and 150 g/kg, respectively. Each group consisted of 57 five pens as replicates, with eight chicks per pen. After the 58 evaluation of growth performance and haematochemical 59 parameters, two birds per pen were slaughtered at 40 days and 60 carcass traits were recorded. Morphometric investigations were 61 performed on duodenum, jejunum and ileum and 62 histopathological alterations were assessed for liver, spleen, 63 thymus, bursa of Fabricius, kidney and heart. The live weight 64 (LW) showed a linear (12 days, P < 0.05, maximum with 65 TM15) and quadratic response (40 days, P < 0.05, maximum 66 with TM5) to dietary TM meal inclusion. The average daily 67 gain (ADG) showed a linear increase (1-12 days, P < 0.05, 68 maximum with TM15) in response to TM meal utilization. A 69 linear effect (1-12 and 12-25 days, P < 0.01 and P < 0.05, 70 maximum with TM15 and TM5) was observed for the daily 71 feed intake (DFI). The feed conversion ratio (FCR) showed a 72 linear response to TM utilization in the period 12-25 days (P < 73 4 0.01, maximum with TM15). A quadratic effect (P < 0.05, 74 maximum with TM5) was observed for the carcass weight. The 75 abdominal fat weight and percentage showed a linear response 76 to dietary TM meal inclusion (P < 0.05 and P < 0.01, maximum 77 with TM15 and TM10). A quadratic increase (P < 0.05, 78 maximum with TM10) was observed for the erythrocytes, 79 while the albumin and GGT showed a linear and quadratic 80 decrease (P < 0.05, minimum with TM10) in relation to TM 81 utilization. Gut morphology and histopathological findings 82 World population is expected to increase by over a third, 97 reaching over 9 billion people in 2050. This trend suggests that 98 market demand for food will continue to grow. In particular, 99 the demand for cereals and protein sources in both human food 100 and animal feed is projected to have an exponential growth by 101 2050 (FAO, 2013). Consequently, the world supply of some 102 conventional feedstuffs like soybean and maize will 103 increasingly compete between humans and livestock. 104Therefore, the foremost gamble will be the identification of 105 alternative sources of protein, energy and other nutrients for 106 livestock, in order to avoid such a competition. 107The potential of insects for becoming a standard ingredient in 108 animal feeds has already been emphasized by several studies 109 (Veldkamp et al., 2012; Van Huis, 2013; Henry et al., 2015), 110 because of the high quality and quantity of protein (Makkar et 111 al., 2014), the low competitiveness with human food (Ballitoc 112 and Sun, 2013) (Van...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.