BackgroundTwo trials were performed to evaluate a partially defatted Hermetia illucens (HI) larvae meal as potential feed ingredient in rainbow trout (Oncorhynchus mykiss Walbaum) diets. In the first trial, 360 trout (178.9 ± 9.8 g of mean initial body weight) were randomly divided into three experimental groups (4 tanks/treatment, 30 fish/tank). The fish were fed for 78 days with isonitrogenous, isolipidic and isoenergetic diets containing increasing levels of HI, on as fed basis: 0% (HI0, control diet), 25% (HI25) and 50% (HI50) of fish meal substitution, corresponding to dietary inclusion levels of 0, 20% and 40%. In the second trial, 36 trout (4 tanks/treatment, 3 fish/tank) were used to evaluate the in vivo apparent digestibility coefficients (ADC) of the same diets used in the first trial.ResultsSurvival, growth performance, condition factor, somatic indexes, and dorsal fillet physical quality parameters were not affected by diet. The highest dietary inclusion of HI larvae meal increased dry matter and ether extract contents of trout dorsal fillet. The use of HI larvae meal induced a decrease of valuable polyunsaturated fatty acids (PUFA) even if differences were only reported at the highest level of HI inclusion. The insect meal worsened the lipids health indexes of the same muscle. Dietary inclusion of insect meal did not alter the villus height of the fish. No differences were found among treatments in relation to ADC of ether extract and gross energy, while ADC of dry matter and crude protein were higher in HI25 if compared to HI50.ConclusionsThe obtained results showed that a partially defatted HI larvae meal can be used as feed ingredient in trout diets up to 40% of inclusion level without impacting survival, growth performance, condition factor, somatic indexes, dorsal fillet physical quality parameters, and intestinal morphology of the fish. However, further investigations on specific feeding strategies and diet formulations are needed to limit the observed negative effects of the insect meal on the FA composition of dorsal muscle.
Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: growth performance, whole body composition and in vivo apparent digestibility
This study evaluated the effects of diets containing Tenebrio molitor (TM) larvae meal on growth performances, somatic indexes, nutrient digestibility, dorsal muscle proximate and fatty acid (FA) compositions of rainbow trout. Three hundred sixty fish were randomly divided into three groups with four replicates each. The groups were fed diets differing in TM inclusion: 0% (TM0), 25% (TM25) and 50% (TM50) as fed weight basis. Weight gain was not affected by treatment. Feeding rate was significantly higher in TM0 than TM50. Feed conversion ratio was significantly higher in TM0 than TM25 and TM50, while an opposite trend was observed for protein efficiency ratio and specific growth rate. The survival rate was significantly lower in TM0 than TM25 and TM50. The apparent digestibility of protein was significantly lower in the TM50 group than the other groups, while the apparent digestibility of dry matter, organic matter and lipids was unaffected by treatment. If compared to control, the protein and lipid contents of fillets were respectively increased and decreased following TM inclusion in the diet. The Σn3/Σn6 FA ratio of fish dorsal muscle was linearly (TM0>TM25>TM50) reduced by TM inclusion in the diet. Results suggested that TM could be used during the growing phase in trout farming; however, additional studies on specific feeding strategies and diet formulations are needed to limit its negative effects on the lipid fraction of fillets.
View related articles View Crossmark data Citing articles: 4 View citing articles PAPER Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality
BackgroundThe present study has evaluated the effects of different inclusion levels of a partially defatted black soldier fly (Hermetia illucens L.; HI) larva meal on the growth performance, blood parameters and gut morphology of broiler chickens. A total of 256 male broiler chickens (Ross 308) were reared from d 1 to d 35 and assigned to 4 dietary treatments (8 replicates/treatment and 8 birds/replicate). HI larva meal was included at increasing levels (0, 5%, 10% and 15%; HI0, HI5, HI10 and HI15, respectively) in isonitrogenous and isoenergetic diets formulated for 3 feeding phases: starter (1–10 d), growing (10–24 d) and finisher (24–35 d). Two birds per pen were slaughtered at d 35 and morphometric investigations and histopathological alterations were performed.ResultsThe live weight (LW) showed linear and quadratic responses to increasing HI larva meal (maximum for HI10 group). Average daily gain (ADG) showed a linear and quadratic responses to HI meal (maximum for HI10 group) during starter and growing periods. A linear decrease was observed for ADG during the finisher period. The daily feed intake (DFI) showed a linear and quadratic effect during the starter period (maximum for HI10 group). Linear and quadratic responses were observed for the feed conversion ratio (FCR) in the growing period and for the whole period of the experiment. The FCR showed a linear response in the finisher period (maximum for HI15). No significant effects were observed for the blood and serum parameters, except for the phosphorus concentration, which showed linear and quadratic responses as well as glutathione peroxidase (GPx) activity, the latter of which showed a linear response. The HI15 birds showed a lower villus height, a higher crypt depth and a lower villus height-to-crypt depth ratio than the other groups.ConclusionsIncreasing levels of dietary HI meal inclusion in male broiler chickens may improve the LW and DFI during the starter period, but may also negatively affect the FCR and gut morphology, thus suggesting that low levels may be more suitable. However, no significant effects on the haematochemical parameters or histological findings were observed in relation to HI meal utilization.
In 2018, the industrial compound feed production throughout the world was 1.103 metric billion tons, which was an increase of 3% compared to 2017. In order to meet the needs of the increasing population, a further increment in compound feed production is necessary. Conventional protein sources are no longer suitable to completely satisfy the increment of feed production in a sustainable way. Insects are one of the most promising options, due to their valuable nutritional features. This paper reviews the state-of-the-art of research on the use of insect meals and oils in aquatic, avian and other animal species diets, focusing mainly on the effects on digestibility, performance and product quality. In general, insect-derived product digestibility is affected by the insect species, the inclusion levels and by the process. Sometimes, the presence of chitin can lead to a decrease in nutrient digestibility. The same considerations are true for animal performance. As far as product quality is concerned, a dramatic effect of insect products has been recorded for the fatty acid profile, with a decrease in valuable n3 fatty acids. Sensory analyses have reported no or slight differences. Insect-derived products seem to be a good alternative to conventional feed sources and can make an important contribution to the sustainable development of the livestock industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.