Adipose tissue-derived adipokines influence a number of organs critical for energy homeostasis and metabolism. One of the most extensively studied adipokines is adiponectin, which exerts anti-diabetic, anti-inflammatory, and anti-atherogenic functions on various cell types. CTRP3, a paralog of adiponectin, is a member of the C1q and tumor necrosis factor-related protein (CTRP) superfamily. CTRP3 reduces hepatic triglyceride levels in diet-induced obese (DIO) mice. However, the physiological role of CTRP3 in adipocytes is largely unknown. In the course of our investigation of expression profiles of CTRPs during adipocyte differentiation, we found that CTRP3 expression pattern is different from that previously reported. Therefore, we examined the effect of CTRP3 on adipogenesis using 3T3-L1 cells. The expression level of CTRP3 was markedly decreased during the differentiation of 3T3-L1 cells. Recombinant CTRP3 (rCTRP3) treatment significantly reduced intracellular lipid content and decreased expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding protein alpha (C/EBPα), adiponectin, and fatty acid binding protein 4 (FABP4) in 3T3-L1 cells. Furthermore, rCTRP3 induced the phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and Akt in differentiated 3T3-L1 adipocytes. These results suggest that CTRP3 may negatively regulate lipid metabolism during adipocyte differentiation.
An analysis of guided-wave acousto-optic tunable filters (AOTFs) that employ simple acousto-optic (AO) weighted coupling techniques for sidelobe reduction and the calculated and experimental results from a specific example that involves only variation of the width of a surface acoustic wave (SAW) slot waveguide are presented. The calculations on single- and multi-stage AOTFs consisting of an optical channel waveguide and a SAW slot waveguide in LiNbO(3) substrate show that waveguide width weighting using generalized Hamming functions would provide significant improvement in sidelobe suppression. Calculated results together with the design, fabrication, and measured performance characteristics of a single-stage AOTF that utilizes a weighted-aperture SAW slot waveguide in YX-LiNbO(3) substrate at the optical wavelength of 1.55 mum and the acoustic center frequency of 175 MHz are reported. The measured sidelobe level is -13.6 dB and the measured FWHM bandwidth is 26 A, as compared to the theoretical values of -15.0 dB and 15 A, respectively. The RF drive power was measured to be 1.0 W at a mode-conversion efficiency of 100%
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.