Many anesthetics evoke electroencephalogram (EEG) burst suppression activity in humans and animals during anesthesia, and the mechanisms underlying this activity remain unclear. The present study used a rat neocortical brain slice EEG preparation to investigate excitatory synaptic mechanisms underlying anesthetic-induced burst suppression activity. Excitatory synaptic mechanisms associated with burst suppression activity were probed using glutamate receptor antagonists (CNQX and APV), GABA receptor antagonists, and simultaneous whole cell patch clamp and microelectrode EEG recordings. Clinically relevant concentrations of thiopental (50--70 microM), propofol (5--10 microM) or isoflurane (0.7--2.1 vol%, 0.5--1.5 rat minimum aveolar concentration (MAC), 200--700 microM) evoked delta slow wave activity and burst suppression EEG patterns similar to in vivo responses. These effects on EEG signals were blocked by glutamate receptor antagonists CNQX (8.6 microM) or APV (50 microM). Depolarizing intracellular bursts (amplitude=34.7+/-4.5 mV; half width=132+/-60 ms) always accompanied EEG bursts, and hyperpolarization increased intracellular burst amplitudes. Barrages of glutamate-mediated excitatory events initiated EEG bursting activity. Glutamate-mediated excitatory postsynaptic currents were significantly depressed by higher anesthetic concentrations that depressed burst suppression EEG activity. A GABA(A) agonist produced a similar EEG effect to the anesthetics. It appears that anesthetic effects at both glutamate and GABA synapses contribute to EEG patterns seen during anesthesia.
Rat neocortical brain slices generated rhythmic extracellular field [microelectroencephalogram (micro-EEG)] oscillations at theta frequencies (3-12 Hz) when exposed to pharmacological conditions that mimicked endogenous ascending cholinergic and GABAergic inputs. Use of the specific receptor agonist and antagonist carbachol and bicuculline revealed that simultaneous muscarinic receptor activation and gamma-aminobutyric acid-A (GABA(A))-mediated disinhibition were necessary to elicit neocortical oscillations. Rhythmic activity was independent of GABA(B) receptor activation, but required intact glutamatergic transmission, evidenced by blockade or disruption of oscillations by 6-cyano-7-nitroquinoxaline-2,3-dione and (+/-)-2-amino-5-phosphonovaleric acid, respectively. Multisite mapping studies showed that oscillations were localized to areas 29d and 18b (Oc2MM) and parts of areas 18a and 17. Peak oscillation amplitudes occurred in layer 2/3, and phase reversals were observed in layers 1 and 5. Current source density analysis revealed large-amplitude current sinks and sources in layers 2/3 and 5, respectively. An initial shift in peak inward current density from layer 1 to layer 2/3 indicated that two processes underlie an initial depolarization followed by oscillatory activity. Laminar transections localized oscillation-generating circuitry to superficial cortical layers and sharp-spike-generating circuitry to deep cortical layers. Whole cell recordings identified three distinct cell types based on response properties during rhythmic micro-EEG activity: oscillation-ON (theta-ON) and -OFF (theta-OFF) neurons, and transiently depolarizing glial cells. Theta-ON neurons displayed membrane potential oscillations that increased in amplitude with hyperpolarization (from -30 to -90 mV). This, taken together with a glutamate antagonist-induced depression of rhythmic micro-EEG activity, indicated that cholinergically driven neocortical oscillations require excitatory synaptic transmission. We conclude that under the appropriate pharmacological conditions, neocortical brain slices were capable of producing localized theta frequency oscillations. Experiments examining oscillation physiology, pharmacology, and topography demonstrated that neocortical brain slice oscillations share many similarities with the in vivo and in vitro theta EEG activity recorded in other brain regions.
Thiopental produced a continuum of EEG-like states in brain slices similar to those observed in vivo. The progression of thiopental-induced effects appear to have resulted from specific cellular actions that were recruited in a concentration-dependent manner. Progressive enhancement of synaptic inhibition followed by depression of excitatory transmission led to micro-EEG frequency slowing, burst suppression, and isoelectric activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.