Abstract:Chitosan is a cationic polysaccharide that is usually obtained by alkaline deacetylation of chitin poly(N-acetylglucosamine). It is biocompatible, biodegradable, mucoadhesive, and nontoxic. These excellent biological properties make chitosan a good candidate for a platform in developing drug delivery systems having improved biodistribution, increased specificity and sensitivity, and reduced pharmacological toxicity. In particular, chitosan nanoparticles are found to be appropriate for non-invasive routes of drug administration: oral, nasal, pulmonary and ocular routes. These applications are facilitated by the absorption-enhancing effect of chitosan. Many procedures for obtaining chitosan nanoparticles have been proposed. Particularly, the introduction of hydrophobic moieties into chitosan molecules by grafting to generate a hydrophobic-hydrophilic balance promoting self-assembly is a current and appealing approach. The grafting agent can be a hydrophobic moiety forming micelles that can entrap lipophilic drugs or it can be the drug itself. Another suitable way to generate self-assembled chitosan nanoparticles is through the formation of polyelectrolyte complexes with polyanions. This paper reviews the main approaches for preparing chitosan nanoparticles by self-assembly through both procedures, and illustrates the state of the art of their application in drug delivery.
Chitosan is a weak cationic polysaccharide composed essentially of β(1 → 4) linked glucosamine units together with some N‐acetylglucosamine units. It is obtained by extensive deacetylation of chitin, a polysaccharide common in nature. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer that exhibits excellent film‐forming ability. As a result of its cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Therefore, because of these interesting properties, it has become the subject of numerous scientific reports and patents on the preparation of microspheres and microcapsules. The techniques employed to microencapsulate with chitosan include, among others, ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation, and polymerization of a vinyl monomer in the presence of chitosan. The aim of this work is to review some of the more common techniques used and to put forward the results obtained by our research group in preparing chitosan‐based microcapsules: for taste masking and improving the stability of a nutritional oil, the sustained release of drugs, as well as the preparation of chitosan superparamagnetic microcapsules for the immobilization of enzymes.Scanning electron micrograph of some superparamagnetic chitosan particles and magnetic hysteresis loop of the microparticles.magnified imageScanning electron micrograph of some superparamagnetic chitosan particles and magnetic hysteresis loop of the microparticles.
Chitosan is a cationic polysaccharide that finds diverse applications in medicine and pharmacy because of its excellent biological qualities: it is biocompatible, biodegradable, mucoadhesive and non‐toxic, and exhibits antimicrobial, antiviral and immunoadjuvant properties. It can be easily processed in diverse forms, such as films, threads, tablets, membranes and microparticles/nanoparticles, allowing the design of a variety of medical and pharmacological devices adaptable to end purposes. In particular, chitosan nanoparticles have become of great interest as polymeric platforms for the development of new pharmacological and therapeutic drug release systems with improved biodistribution and increased specificity and sensitivity, and reduced pharmacological toxicity. Chitosan nanoparticles have been found appropriate for non‐invasive routes of drug administration: oral, nasal, pulmonary and ocular routes. These applications are facilitated by the absorption‐enhancing effect of chitosan. Additionally, chitosan nanoparticles have been proposed as non‐viral vectors in gene therapy and have shown adjuvant effect in vaccines. This paper reviews the main procedures developed for preparing chitosan nanoparticles. Moreover, it illustrates the state of the art of chitosan nanoparticle applications in drug delivery. Copyright © 2011 Society of Chemical Industry
Superparamagnetic chitosan microspheres were prepared by a water-in-oil suspension-crosslinking technique. To this end, magnetite particles were dispersed in a chitosan solution in acetic acid. The dispersion was added to toluene containing Span 20 as a surfactant with stirring. Chitosan solution droplets were hardened with glutaraldehyde. The magnetic chitosan microspheres obtained were characterized with scanning electron microscopy, differential thermal analysis, and vibrational magnetometry. The microspheres had a wide size distribution, ranging from 43 Ϯ 25 to 255 Ϯ 55 m, that depended on the reaction conditions. The mean particle size decreased with an increase in the concentration of Span 20 or the amount of glutaraldehyde and with the addition of NaCl. However, a major size reduction was achieved by an increase in the stirring rate. Tyrosinase was immobilized on the microspheres. The immobilized enzyme retained 70% of its activity, as determined by the capacity to degrade phenolic compounds. The immobilized tyrosinase resulted in greater stability than the free enzyme. In addition, the enzyme maintained 65% of its phenol oxidation activity after 10 cycles of reuse. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: [651][652][653][654][655][656][657] 2005
Thermosensitive macroporous scaffolds of poly(N-isopropylacrylamide) (polyNIPA) loaded with chitosan/bemiparin nanoparticles are prepared by the free radical polymerization in cryogenic conditions. Chitosan/bemiparin nanoparticles of 102 ± 6.5 nm diameter are prepared by complex coacervation and loaded into polyNIPA cryogels. SEM image reveal the highly porous structure of cryogels and the integration of nanoparticles into the macroporous system. Volume phase transition temperature (VPT) and total freezing water content of cryogels are established by differential scanning calorimetry, and their porosity is determined by image-NMR. Swelling of cryogels (above and below the VPT) is highly dependent on nanoparticles concentration. In vitro release profile of bemiparin from cryogel is highly modulated by the presence of chitosan. Bemiparin released from nanoparticles preserves its biological activity, as shown by the BaF32 cell proliferation assay. Cryogels are not cytotoxic for the human fibroblast cells and present excellent properties for application on tissue engineering and controlled release of heparin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.