Advances in regenerative medicine and in modern biomedical therapies are fast evolving and set goals causing an upheaval in the field of materials science. This review discusses recent developments involving the use of biopolymers as smart materials, in terms of material properties and stimulus-responsive behavior, in the presence of environmental physico-chemical changes. An overview on the transformations that can be triggered in natural-based polymeric systems (sol–gel transition, polymer relaxation, cross-linking, and swelling) is presented, with specific focus on the benefits these materials can provide in biomedical applications.
The advent of 2D nanostructured materials as advanced fillers for polymer matrix composites has opened the doors to a plethora of new industrial applications requiring both electric and thermal management. Unique properties, in fact, can arise from accurate selection and processing of 2D fillers and their matrix. Here, we report an innovative family of nanocomposite membranes based on polyurethane (PU) and graphene nanoplatelets (GNPs), designed to improve thermal comfort in functional textiles. GNP particles were thoroughly characterized (through Raman, atomic force microscopy, high‐resolution TEM, scanning electron microscope), and showed high crystallinity (ID/IG = 0.127), low thickness (D50 < 6–8 layers), and high lateral dimensions (D50 ≈ 3 μm). When GNPs were loaded (up to 10% wt/wt) into the PU matrix, their homogeneous dispersion resulted in an increase of the in‐plane thermal conductivity of composite membranes up to 471%. The thermal dissipation of membranes, alone or coupled with cotton fabric, was further evaluated by means of an ad hoc system designed to simulate a human forearm. The results obtained provide a new strategy for the preparation of membranes suitable for technical textiles, with improved thermal comfort.
The effects of experimental variables on zirconia nanocrystal growth are investigated, correlating the morphological transformations with phase composition in synthesized nanopowders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.