The micropylar apparatus in Drosophila melanogaster consists of two parts. The inner part is a protrusion of vitelline membrane, whereas the outer part is a chorionic protrusion containing a canal, through which the spermatozoon enters. In the formation of the micropylar apparatus two follicle cell subpopulations are involved: the border cells, i.e., a group of 9 follicle cells, and the peripheral cells (about 36 cells). The morphogenesis of the micropyle starts at stage 10B, when the border cells secrete the paracrystalline region of the vitelline membrane. The micropylar canal (length 7 μm, diameter 0.7 μm) and the pocket that penetrates within the paracrystalline structure are moulded by two border cell projections, full of microtubules. The formation of the micropyle terminates at stage 14B, when its chorionic part is completed and the border cell projections degenerate. The structure of the micropyle in fertilized and unfertilized laid eggs differs from the mature (stage 14B) egg in that the vitelline membrane is modified and appears homogeneous as in the rest of the eggshell. These transformations seem to be unrelated to sperm entry.
The egg of the olive fly, Dacus oleae (Diptera, Tephritidae), is laid inside olives and the larva eventually destroys the fruit. The oocyte is surrounded by several distinct layers which are produced during choriogenesis. The chorion covering the main body of the egg outside of the vitelline membrane includes a "wax" layer, an innermost chorionic layer, an endochorion consisting of inner and outer layers separated by pillars and cavities similar to their counterparts in Drosophila melanogaster, as well as inner and outer exochorionic layers. The anterior pole is shaped like an inverted cup, which is chiefly hollow around its base and has very large openings communicating with the environment. Holes through the surface of the endochorion result from deposition of endochorionic substance around follicular cell microvilli. An opening at the apex of the cup provides an entrance for sperm entering the micropylar canal, which traverses the endochorion and continues into a "pocket" in a thickened vitelline protrusion. The micropylar canal is formed by deposition of endochorion and vitelline membrane around an elongated pair of follicular cell extensions. These extensions later degenerate and leave an empty canal about 5 microns in diameter and the narrower pocket about 1 micron in diameter. Respiration is thought to be facilitated by openings at the base of the anterior pole as well as by openings through the "plastron" around the main body of the shell.
Microtubules are the prime components involved in chromosomal segregation, their functional accuracy ensuring maintenance of the normal karyotype in the progeny. Chemically-induced disruption of microtubules during mitosis can lead to aneuploidy. In this study, seven environmental chemicals, i.e. cadmium chloride (CD), econazole nitrate (EZ), benomyl (BM), thiabendazole (TB), griseofulvin (GF), thimerosal (TM) and hydroquinone (HQ), were tested for their ability to induce microtubule disruption in mitotic meristematic root cells of the higher plant Hordeum vulgare, with the use of anti-tubulin indirect immunofluorescence microscopy. All chemicals tested in this study, with the exception of TB and HQ, produced modifications in the morphology of microtubule organization and reduced the fidelity of the spindle apparatus in Hordeum vulgare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.