This study aimed to bring the trapezius muscle knowledge of the locations where the accessory nerve branches enter the muscle belly to reach the motor endplates and find myofascial trigger points (MTrPs). Although anatomoclinical correlations represent a major feature of MTrP, no previous reports describing the distribution of the accessory nerve branches and their anatomical relationship with MTrP are found in the literature. Both trapezius muscles from twelve adult cadavers were carefully dissected by the authors (anatomy professors and medical graduate students) to observe the exact point where the branches of the spinal accessory nerve entered the muscle belly. Dissection was performed through stratigraphic layers to preserve the motor innervation of the trapezius muscle, which is located deep in the muscle. Seven points are described, four of which are motor points: in all cases, these locations corresponded to clinically described MTrPs. The four points were common in these twelve cadavers. This type of clinical correlation between spinal accessory nerve branching and MTrP is useful to achieve a better understanding of the anatomical correlation of MTrP and the physiopathology of these disorders and may provide a scientific basis for their treatment, rendering useful additional information to therapists to achieve better diagnoses and improve therapeutic approaches.
Myofascial pain syndrome is characterized by pain and limited range of motion in joints and caused by muscular contracture related to dysfunctional motor end plates and myofascial trigger points (MTrPs). We aimed to observe the anatomical correlation between the clinically described MTrPs and the entry point of the branches of the inferior gluteal nerve into the gluteus maximus muscle. We dissected twenty gluteus maximus muscles from 10 human adult cadavers (5 males and 5 females). We measured the muscles and compiled the distribution of the nerve branches into each of the quadrants of the muscle. Statistical analysis was performed by using Student's t-test and Kruskal-Wallis tests. Although no difference was observed either for muscle measurements or for distribution of nerve branching among the subjects, the topography of MTrPs matched the anatomical location of the entry points into the muscle. Thus, anatomical substract of the MTrPs may be useful for a better understanding of the physiopathology of these disorders and provide basis for their surgical and clinical treatment.
Brazil. Intellectual and scientific content of the study, critical revision. ABSTRACT PURPOSE:To describe an effective experimental model to study the Achilles tendon healing. METHODS:Forty male Rattus norvegicus albinus, Wistar lineage adult male weighing 250 to 300g were used for this experiment and thirty were surgically submitted to bilateral partial transverse section of the Achilles tendon. The right tendon was treated with radio waves (RF) whereas the left tendon served as control. On the third postoperative day, the rats were divided into four experimental groups consisting of ten rats each which were treated with monopolar RF adjusted to 650 kHz and 2w, for two minutes twice a week and a group of normal animals without any intervention, until they were sacrificed on the 7 th , 14 th and 28 th days, respectively. Tendons were weighed and collagen quantification was evaluated by hydroxyprolin content. RESULTS:Significant reduction in collagen content on day 7, 14 and 28 was related to control experiment to normal tendon (7 days, p<0.01; 14 e 28 days, p<0.05). CONCLUSION:The experimental model has been effective and available to be used to study Achilles tendon healing.
Myofascial pain syndrome is characterized by pain and a limited range of joint motion caused by muscle contracture related to motor-end-plate dysfunction and the presence of myofascial trigger points (MTrPs). It is the most frequent cause of musculoskeletal pain, with a worldwide prevalence varying between 13.7% and 47%. Of the patients with myofascial pain syndrome, approximately 17% have pain in the medial hindfoot area. The abductor hallucis muscle is located in the medial, posterior region of the foot and is related to painful plantar syndromes. The objective of this study was to describe the distribution of the medial plantar nerve and their anatomical relationship with MTrPs found in the literature. Thirty abductor hallucis muscles were dissected from 15 human cadavers (8 males and 7 females). The muscles were measured, and the distribution data of the medial plantar nerve branches in each quadrant were recorded. For statistical analysis, we used generalized estimation equations with a Poisson distribution and a log logarithm function followed by Bonferroni multiple comparisons of the means. The data are expressed as the mean ± standard deviation. The level of significance was adjusted to 5% (p<0.05). A high concentration of nerve branches was observed in the first quadrant (Q1) of the abductor hallucis muscle, which is the same area in which the MTrPs are described. The topography of the entry points of the branches of the medial plantar nerve to the abductor hallucis muscle correlates with the topography of the muscular trigger points. The anatomical structure of the MTrPs may be useful for a better understanding of the pathophysiology of myofascial disorders and provide a basis for surgical and clinical treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.