Employing avant-garde cuisine techniques, in particular sodium alginates, liquid food can be shaped into spheres, thereby conferring to the former original and sometimes unexpected forms and textures. To achieve this result, rational understanding of the science that underlies food physical chemistry is of paramount importance. In this contribution, the process of spherification is dissected for the first time at the atomic level by means of classical molecular dynamics simulations. Our results show that a thin membrane consisting of intertwined alginate chains forms in an aqueous solution containing calcium ions, thereby encapsulating in a sphere the aliment in its liquid state. They also show why the polysaccharide chains will not cohere into such a membrane in a solution of sodium ions. Analysis of the trajectories reveals the emergence of so-called egg-box spatial arrangements, which connect the alginate chains by means of repeated chelation of one calcium ion by two carboxylate groups. Free-energy calculations delineating the formation of these egg-box structures further illuminate the remarkable stability of such tridimensional organizations, which ensures at room temperature the spontaneous growth of the polysaccharide membrane. Spherification has been also examined for liquid aliments of different nature, modeled by charged, hydrophilic and hydrophobic compounds. The membrane-encapsulated food is shaped into robust and durable spheres, irrespective of the liquid core material. By reconciling the views of spherification at small and large scales, the present study lays the groundwork for the rational design of innovative cooking techniques relevant to avant-garde cuisine.
The ongoing academization of gastronomic studies indicates the necessity for a commonly accepted classification system for cooks that does not contradict scientific approaches. This work discusses the fundamentals used to classify unelaborated food products by chefs and scientists; proposes taxonomic gastronomy as a new interdisciplinary framework that studies the taxonomy surrounding gastronomy; and presents a categorization of unelaborated food products that follows commonly accepted culinary criteria yet avoids contradiction with scientific knowledge. As little literature focuses on these issues, and similar experiences are scarce, we conclude that further cross-disciplinary endeavors such as this will continue to be greatly fruitful.
No dej en nunca de cami nar mi rando al hori zonteEl proyecto "Escuelas Creativas" surge de la convicción de que cada realidad escolar es distinta. La clave ha sido entender que todas las escuelas tienen la capacidad interna de mejora y que cada comunidad educativa debe buscar sus propias soluciones y fomentar y gestionar el cambio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.