Context aware systems are a promising approach to facilitate dailylife activities. Concerning communication services, business users may be sometimes overloaded with work so that they become temporally unable to handle incoming communications. After having surveyed the challenges to build context-aware systems, we introduce here HEP, a system that recommends communication services to the caller based on the callee's context. HEP's main context source is the usage history of the different communication services as well as the users' calendars. It has been prototyped and tested at Orange Labs.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Copyright
Networks have provided a representation for a wide range of real systems, including communication flow, money transfer or biological systems, to mention just a few. Communities represent fundamental structures for understanding the organization of real-world networks. Uncovering coherent groups in these networks is the goal of community detection. A community is a mesoscopic structure with nodes heavily connected within their groups by comparison to the nodes in other groups. Communities might also overlap as they may share one or multiple nodes. Evaluating the results of a community detection algorithm is an equally important task. This paper introduces metrics for evaluating overlapping community detection. The idea of introducing new metrics comes from the lack of efficiency and adequacy of state-of-the-art metrics for overlapping communities. The new metrics are tested both on simulated data and standard datasets and are compared with existing metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.