Se is essential to human and animal health but can be toxic in excess. An interest in its geochemistry has developed alongside a greater understanding of its function in a number of health conditions. Geology exerts a strong control on the Se status of the surface environment; low-Se rock-types (0·05–0·09 mg Se/kg) make up the majority of rocks occurring at the Earth's surface, which in turn account for the generally low levels of Se in most soils. However, there are exceptions such as associations with sulfide mineralisation and in some types of sedimentary rocks (e.g. black shales) in which contents of Se can be much higher. Baseline geochemical data now enable a comparison to be made between environmental and human Se status, although a direct link is only likely to be seen if the population is dependent on the local environment for sustenance. This situation is demonstrated with an example from the work of the British Geological Survey in the Se-deficiency belt of China. The recent fall in the daily dietary Se intake in the UK is discussed in the context of human Se status and declining use of North American wheat in bread making. Generally, US wheat has ten times more Se than UK wheat, attributed to the fact that soils from the wheat-growing belt of America are more enriched in Se to a similar order of magnitude. In agriculture effective biofortification of crops with Se-rich fertilisers must be demonstrably safe to the environment and monitored appropriately and baseline geochemical data will enable this process to be done with confidence.
-Selenium deficiency (Keshan Disease) and toxicity diseases in humans occur within 20 km of each other in Enshi District in China and have been linked to environmental levels of Se. Low concentrations of Se are associated with Jurassic siltstones and sandstones, whereas high concentrations occur in areas underlain by Permian carbonaceous strata. Although these broad relationships between Se in the environment and the human population have been established previously, not all villages underlain by the carbonaceous strata suffer Se toxicity problems and the precise controls on Se distribution and availability have not been quantified. In the present study soil, grain, drinking water and human hair samples are examined to determine the controls on Se availability in three Se environments in Enshi District. Five low-Se and Keshan Disease villages, five high-Se and no toxicity villages and five high-Se and toxicity villages were selected for the study. Results show that the majority of samples in the low-Se villages are deficient or marginal in Se and that Se availability to plants is inhibited by adsorption onto organic matter and Fe oxyhydroxides in soil. Therefore, remediation strategies involving the application of Se fertiliser direct to the soil may not increase plant Se levels as expected. In the highSe villages, localised lithological variations result in considerable ranges in Se concentrations in all sample types. Deficient and excessive levels of Se are recorded samples from the same village. Selenium bioavailability in the high-Se toxicity villages is controlled by the total soil Se concentration and pH. A greater proportion of the Se is plant available in villages where the carbonaceous strata are interbedded with limestone. Villagers should be advised to avoid planting crops in these areas if possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.