BackgroundOne-third of US adults, 86 million people, have prediabetes. Two-thirds of adults are overweight or obese and at risk for diabetes. Effective and affordable interventions are needed that can reach these 86 million, and others at high risk, to reduce their progression to diagnosed diabetes.ObjectiveThe aim was to evaluate the effectiveness of a fully automated algorithm-driven behavioral intervention for diabetes prevention, Alive-PD, delivered via the Web, Internet, mobile phone, and automated phone calls.MethodsAlive-PD provided tailored behavioral support for improvements in physical activity, eating habits, and factors such as weight loss, stress, and sleep. Weekly emails suggested small-step goals and linked to an individual Web page with tools for tracking, coaching, social support through virtual teams, competition, and health information. A mobile phone app and automated phone calls provided further support. The trial randomly assigned 339 persons to the Alive-PD intervention (n=163) or a 6-month wait-list usual-care control group (n=176). Participants were eligible if either fasting glucose or glycated hemoglobin A1c (HbA1c) was in the prediabetic range. Primary outcome measures were changes in fasting glucose and HbA1c at 6 months. Secondary outcome measures included clinic-measured changes in body weight, body mass index (BMI), waist circumference, triglyceride/high-density lipoprotein cholesterol (TG/HDL) ratio, and Framingham diabetes risk score. Analysis was by intention-to-treat.ResultsParticipants’ mean age was 55 (SD 8.9) years, mean BMI was 31.2 (SD 4.4) kg/m2, and 68.7% (233/339) were male. Mean fasting glucose was in the prediabetic range (mean 109.9, SD 8.4 mg/dL), whereas the mean HbA1c was 5.6% (SD 0.3), in the normal range. In intention-to-treat analyses, Alive-PD participants achieved significantly greater reductions than controls in fasting glucose (mean –7.36 mg/dL, 95% CI –7.85 to –6.87 vs mean –2.19, 95% CI –2.64 to –1.73, P<.001), HbA1c (mean –0.26%, 95% CI –0.27 to –0.24 vs mean –0.18%, 95% CI –0.19 to –0.16, P<.001), and body weight (mean –3.26 kg, 95% CI –3.26 to –3.25 vs mean –1.26 kg, 95% CI –1.27 to –1.26, P<.001). Reductions in BMI, waist circumference, and TG/HDL were also significantly greater in Alive-PD participants than in the control group. At 6 months, the Alive-PD group reduced their Framingham 8-year diabetes risk from 16% to 11%, significantly more than the control group (P<.001). Participation and retention was good; intervention participants interacted with the program a median of 17 (IQR 14) of 24 weeks and 71.1% (116/163) were still interacting with the program in month 6.ConclusionsAlive-PD improved glycemic control, body weight, BMI, waist circumference, TG/HDL ratio, and diabetes risk. As a fully automated system, the program has high potential for scalability and could potentially reach many of the 86 million US adults who have prediabetes as well as other at-risk groups.Trial RegistrationClinicaltrials.gov NCT01479062; https://clinicaltrials.gov/ct2...
Dracunculiasis was rediscovered in Chad in 2010 after an apparent absence of 10 years. In April 2012 active village-based surveillance was initiated to determine where, when, and how transmission of the disease was occurring, and to implement interventions to interrupt it. The current epidemiologic pattern of the disease in Chad is unlike that seen previously in Chad or other endemic countries, i.e., no clustering of cases by village or association with a common water source, the average number of worms per person was small, and a large number of dogs were found to be infected. Molecular sequencing suggests these infections were all caused by Dracunculus medinensis. It appears that the infection in dogs is serving as the major driving force sustaining transmission in Chad, that an aberrant life cycle involving a paratenic host common to people and dogs is occurring, and that the cases in humans are sporadic and incidental.
Background Cost-effective interventions to improve diet and physical activity are a public health priority. Alive! is an email-based intervention to increase physical activity, reduce saturated and trans fats and added sugars, and increase fruit and vegetable consumption. It was shown to improve these behaviors in a large randomized controlled trial.Objective (1) To describe the components and behavioral principles underlying Alive!, and (2) to report effects of the intervention on the secondary outcomes: health-related quality of life, presenteeism, self-efficacy, and stage of change.Methods The Alive! behavior change model is designed to elicit healthy behaviors and promote their maintenance. Behavioral strategies include assessments followed by individualized feedback, weekly goal-setting, individually tailored goals and tips, reminders, and promotion of social support. Alive! was tested among non-medical employees of Kaiser Permanente of Northern California, who were randomized to either the intervention group or the wait-list control group. After randomization, intervention group participants chose one topic to undertake for the intervention period: increasing physical activity, increasing fruits and vegetables, or decreasing saturated and trans fats and added sugars. Pre-post questionnaires assessed changes in SF-8 health-related quality of life, presenteeism, self-efficacy, and stage of change. Mixed effects multiple linear regression and ordinal logistic regression models were used, with department as a random effect factor. Analyses were by intention to treat: the 30% (238/787) who did not respond to the follow-up questionnaires were assigned change scores of zero.ResultsParticipants were 19 to 65 years (mean 44.0 +/- 10.6), and 74.3% (585/787) were female. Mean SF-8 Physical quality of life score increased significantly more in the intervention group than in the control group, 1.84 (95% CI 0.96-2.72) vs 0.72 (95% CI -0.15-1.58) respectively, P = .02. SF8 Mental score also improved significantly more in the intervention group than in the control group (P = .02). The odds ratio for improvement in self-assessed health status was 1.57 (95% CI 1.21-2.04, P < .001) for the intervention group compared to the control group. The odds ratio for having a reduction in difficulty accomplishing work tasks because of physical or emotional problems, a measure of presenteeism, was 1.47 (95% CI 1.05-2.05, P = .02) for the intervention group compared to the control group. The odds of having an improvement in self-efficacy for changing diet was 2.05 (95% CI 1.44-2.93) for the intervention vs the control group (P < .001). Greater improvement in stage of change for physical activity (P = .05), fats (P = .06), and fruits/vegetables (P = .006) was seen in the intervention group compared to the control group. Significant effects on diet and physical activity behavior change are reported elsewhere.Conclusions Cost-effective methods that can reach large populations with science-based interventions are urgently needed. Alive! is a...
The current strategy for interrupting transmission of lymphatic filariasis (LF) is annual mass drug administration (MDA), at good coverage, for 6 or more years. We describe our programmatic experience delivering the MDA combination of ivermectin and albendazole in Plateau and Nasarawa states in central Nigeria, where LF is caused by anopheline transmitted Wuchereria bancrofti. Baseline LF mapping using rapid blood antigen detection tests showed mean local government area (LGA) prevalence of 23% (range 4–62%). MDA was launched in 2000 and by 2003 had been scaled up to full geographic coverage in all 30 LGAs in the two states; over 26 million cumulative directly observed treatments were provided by community drug distributors over the intervention period. Reported treatment coverage for each round was ≥85% of the treatment eligible population of 3.7 million, although a population-based coverage survey in 2003 showed lower coverage (72.2%; 95% CI 65.5–79.0%). To determine impact on transmission, we monitored three LF infection parameters (microfilaremia, antigenemia, and mosquito infection) in 10 sentinel villages (SVs) serially. The last monitoring was done in 2009, when SVs had been treated for 7–10 years. Microfilaremia in 2009 decreased by 83% from baseline (from 4.9% to 0.8%); antigenemia by 67% (from 21.6% to 7.2%); mosquito infection rate (all larval stages) by 86% (from 3.1% to 0.4%); and mosquito infectivity rate (L3 stages) by 76% (from 1.3% to 0.3%). All changes were statistically significant. Results suggest that LF transmission has been interrupted in 5 of the 10 SVs, based on 2009 finding of microfilaremia ≥1% and/or L3 stages in mosquitoes. Four of the five SVs where transmission persists had baseline antigenemia prevalence of >25%. Longer or additional interventions (e.g., more frequent MDA treatments, insecticidal bed nets) should be considered for ‘hot spots’ where transmission is ongoing.
This paper describes a pilot initiative to incorporate lymphatic filariasis (LF) elimination and urinary schistosomiasis (SH) control into a mature onchocerciasis control program based on community-directed ivermectin treatment in central Nigeria. In the same districts having onchocerciasis we found LF (as determined by blood antigen testing in adult males) in 90% of 149 villages with a mean prevalence of 22.4% (range 0-67%). Similarly, SH, as determined by dipstick reagent testing for blood in urine from school children, was found in 91% of 176 villages with a mean prevalence in school age children of 24.4% (range 0-87%). Health education and treatment interventions for SH resulted in 52,480 cumulative praziquantel treatments, and 159,555 combined onchocerciasis and LF treatments (with ivermectin and albendazole) as of the end of 2000. Treatments for onchocerciasis and LF were separated by at least 1 week from treatments for SH. There was no negative impact on the coverage of the onchocerciasis program by the addition of LF and SH activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.