Two different techniques were utilized to identify the infiltration of polymorphonuclear leukocytes (PMN) into cerebral tissue following focal ischemia: histologic analysis and a modified myeloperoxidase (MPO) activity assay. Twenty-four hours after producing permanent cortical ischemia by occluding and severing the middle cerebral artery of male spontaneously hypertensive rats, contralateral hemiparalysis and sensory-motor deficits were observed due to cerebral infarction of the frontal and parietal cortex. In hematoxylin-and-eosin-stained histologic sections, PMN, predominantly neutrophils, were identified at various stages of diapedesis from deep cerebral and meningeal vessels at the periphery of the infarct, into brain parenchyma. When MPO activity in normal brain tissue was studied initially, it could not be demonstrated in normal tissues extracted from non-washed homogenates. However, if tissue was homogenized in phosphate buffer (i.e., washed), MPO activity was expressed upon extraction. Utilizing this modified assay, MPO activity was significantly increased only in the infarcted cortex compared to other normal areas of the brain. This was observed in non-perfused animals and after perfusion with isotonic saline to remove blood constituents from the vasculature prior to brain removal. The increased PMN infiltration and MPO activity were not observed in forebrain tissue of sham-operated control rats. Also, MPO activity was not increased in the ischemic cortex of MCAO rats perfused immediately after middle cerebral artery occlusion, indicating that blood was not trapped in the ischemic area. By using a leukocyte histochemical staining assay, activity of peroxidases was identified within vascular-adhering/infiltrating PMN in the infarcted cortex 24 hr after focal ischemia. An evaluation of several blood components indicated that increased MPO activity was selective for PMN. The observed increase of approximately 0.3 U MPO/g wet weight ischemic tissue vs. nonischemic cerebral tissues probably reflects the increased vascular adherance/infiltration of approximately 600,000 PMN/g wet weight infarcted cortex 24 hr after focal ischemia. This combined biochemical and histological study strongly suggests that PMN adhere within blood vessels and infiltrate into brain tissue injured by focal ischemia and that the associated inflammatory response might contribute to delayed progressive tissue damage in focal stroke. This modified MPO assay is a useful, quantitative index of PMN that can be utilized to elucidate the potential deleterious consequences of neutrophils infiltrating into the central nervous system after cerebral ischemia, trauma, or other pro-inflammatory stimuli.
Background and Purpose: Neutrophils are critically involved with ischemia and reperfusion injury in many tissues but have not been studied under conditions of reperfusion after focal cerebral ischemia. The present studies were conducted to confirm our previous observations quantifying neutrophils in rat permanent focal stroke using a myeloperoxidase activity assay and to extend them to transient ischemia with reperfusion. In addition, leukotriene B 4 receptor binding in ischemic tissue was evaluated as a potential marker for inflammatory cell infiltration.Methods: Histological, enzymatic, and receptor binding techniques were used to evaluate neutrophil infiltration and receptor binding in infarcted cortical tissue 24 hours after permanent middle cerebral artery occlusion («=25) or temporary occlusion for 80 (n=12) or 160 (n-22) minutes followed by reperfusion for 24 hours in spontaneously hypertensive rats.Results: Sham surgery (n=26) produced no changes in any parameter measured. After permanent middle cerebral artery occlusion, neutrophil accumulation was observed histologically, but the infiltration was moderate and typically within and adjacent to blood vessels bordering the infarcted cortex. After temporary middle cerebral artery occlusion with reperfusion, marked neutrophil infiltration was observed throughout the infarcted cortex.
In previous studies, we have used histological methods to characterize cellular changes, and validated the use of the myeloperoxidase (MPO) activity assay to quantitate increased neutrophil infiltration in ischemic stroke. We also identified increased leukotriene B4 (LTB4) binding sites as a potential marker for neutrophil infiltration into focal ischemic tissue. However, these studies were conducted at only one time-point, 24 h after ischemia. In the present study, we examined the full time-course of MPO activity and LTB4 receptor binding following middle cerebral artery occlusion (MCAO) made permanently (PMCAO) or transiently (160 min followed by reperfusion; TMCAO) in spontaneously hypertensive rats, and compared the results to previously characterized histologic changes in these models. Ischemic and contralateral (control) cortical tissue samples were assayed for MPO (U/g wet wt) and [3H]LTB4 receptor binding (fmol/mg protein). Following PMCAO, MPO activity significantly increased as early as 12 h and continued to increase over the next 5 d (p < 0.05). Following TMCAO, MPO activity was significantly elevated already after only 6 h of reperfusion and also continued to increase over the next 5 d of reperfusion (p < 0.05). LTB4 receptor binding and MPO activity were highly correlated during periods when both measures increased together (i.e., 0.5-5 d; p <0.01). However, by 15 d post-MCAO, LTB4 receptor binding remained elevated after MPO activity levels had returned to normal. This persistent LTB4 binding was associated with the significant gliosis that was characterized previously to persist in these models. The time-course of increased MPO activity and initially increased LTB4 binding post-MCAO correspond very well to our previous histological data that characterized the time-course for leukocyte infiltration under these conditions. Therefore, the increased MPO activity over time was associated with initial neutrophil and later mononuclear cell infiltration into ischemic tissue in these models. In addition, the present studies utilized histochemical analysis to demonstrate peroxidase activity in macrophages within the cerebral infarct following MCAO, thus validating that MPO activity originates from the later infiltrating mononuclear cells in addition to the early infiltrating neutrophils that had been previously characterized in the same manner. TMCAO produces a significantly larger and earlier increase in ischemic cortex MPO activity and a similar later increase in MPO activity compared to PMCAO treatment.(ABSTRACT TRUNCATED AT 400 WORDS)
A series of 1-alkyl- or -aryl-4-aryl-5-pyridinylimidazoles (A) were prepared and tested for their ability to bind to a recently discovered protein kinase termed CSBP and to inhibit lipopolysaccharide (LPS)-stimulated TNF production in mice. The kinase, CSBP, appears to be involved in a signaling cascade initiated by a number of inflammatory stimuli and leading to the biosynthesis of the inflammatory cytokines IL-1 and TNF. Two related imidazole classes (B and C) had previously been reported to bind to CSBP and to inhibit LPS-stimulated human monocyte IL-1 and TNF production. The members of the earlier series exhibited varying degrees of potency as inhibitors of the enzymes of arachidonic acid metabolism, PGHS-1 and 5-LO. Several of the more potent CSBP ligands and TNF biosynthesis inhibitors among the present series of N-1-alkylated imidazoles (A) were tested as inhibitors of PGHS-1 and 5-LO and were found to be weak to inactive as inhibitors of these enzymes. One of the compounds, 9 (SB 210313) which lacked measureable activity as an inhibitor of the enzymes of arachidonate metabolism, and had good potency in the binding and in vivo TNF inhibition assays, was tested for antiarthritic activity in the AA rat model of arthritis. Compound 9 significantly reduced edema and increased bone mineral density in this model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.