Mountain papaya ( Vasconcellea pubescens ) is a climacteric fruit that develops a strong and characteristic aroma during ripening. Esters are the main volatile compounds produced by the fruit, and most of them are dependent on ethylene. As esters are synthesized through alcohol acyltransferases (AAT), a full-length cDNA (VpAAT1) was isolated that displayed the characteristic motifs of most plant acyltransferases. The full-length cDNA sequence was cloned and expressed in yeasts, obtaining a functional enzyme with high AAT activity toward the formation of benzyl acetate. The transcript accumulation pattern provided by qPCR analysis showed that the VpAAT1 gene is expressed exclusively in fruit tissues and that a high level of transcripts is accumulated during ripening. The increase in VpAAT1 transcripts in fruit is coincident with the increase in AAT activity; transcript accumulation is induced by ethylene, and it is avoided by 1-methylcyclopropene (1-MCP) treatment. The data indicate that VpAAT1 is involved in aroma formation and that ethylene plays a major role in regulating its expression.
Rain-induced cracking before harvest is the major cause of crop loss in sweet cherry (Prunus avium [L.] L.) In order to better understand the relationship between cherry fruit cracking and gene expression, the transcriptional patterns of six genes related to cell wall modification and cuticular wax biosynthesis were analyzed during fruit setting (FS), fruit color change (FC) and fruit ripening (FR), employing two contrasting cultivars: the cracking resistant 'Kordia' and the cracking susceptible 'Bing'. The transcription levels of AP2/EREBP-type transcription factor (PaWINB), wax synthase (WS), β-ketoacyl-CoA synthase (PaKCS6), and β-galactosidase (β-Gal) showed higher levels in 'Kordia' than in 'Bing' during the FS stage, while similar values were observed in both cultivars at FR stage. In contrast to that pattern, transcription levels of expansin (PaEXP1) were higher at FR stage in 'Kordia' than in 'Bing'. Transcript profile of lipid transport protein gene (PaLTPG1) decreased during fruit development, with higher levels in 'Bing' than in 'Kordia' at FC and FR stages suggesting no relation with cracking tolerance. The expression profiles of PaWINB, WS, PaKCS6, and β-Gal suggest that they are genes involved in conferring cracking tolerance, likely due to their function in cuticle deposition during early stages of fruit development. In addition, a greater expression level of expansin gene would allow for a faster growth rate in 'Kordia' at FR stage.
Rain-induced cherry fruit cracking is one of the most important problems in the cherry industry, and its occurrence causes significant economic losses. Sweet cherry (Prunus avium [L.] L.) is a non-climacteric fruit affected by both abscisic acid (ABA) and methyl jasmonate (MeJA) during development. The objective of this study was to evaluate the effect of these phytohormones on cracking susceptibility and quality parameters of sweet cherry fruit ('Bing'), located in the central region of Chile. During two seasons, independent pre-harvest applications of ABA (0.1 mM) and MeJA (0.4 mM) or both combined, at fruit developmental stages of fruit set or fruit color change, significantly reduced the number of mature cracked fruit after 6 h of immersion in water (p < 0.05). In both seasons the combinations of ABA and MeJA applied at fruit set reducing cracking index in an 87% compared to the control without compromising the weight or the diameter of the fruits. Moreover, in the second season ABA and MeJA applications at fruit set increased fruit firmness (11% and 6% respectively) and fruit color parameters regardless of the fruit stage at application, although slight decreases in soluble solids content were observed in most of the treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.