ObjectiveEating disorders develop through a combination of genetic vulnerability and environmental stress, however the genetic basis of this risk is unknown.MethodsTo understand the genetic basis of this risk, we performed whole exome sequencing on 93 unrelated individuals with eating disorders (38 restricted-eating and 55 binge-eating) to identify novel damaging variants. Candidate genes with an excessive burden of predicted damaging variants were then prioritized based upon an unbiased, data-driven bioinformatic analysis. One top candidate pathway was empirically tested for therapeutic potential in a mouse model of binge-like eating.ResultsAn excessive burden of novel damaging variants was identified in 186 genes in the restricted-eating group and 245 genes in the binge-eating group. This list is significantly enriched (OR = 4.6, p<0.0001) for genes involved in neuropeptide/neurotrophic pathways implicated in appetite regulation, including neurotensin-, glucagon-like peptide 1- and BDNF-signaling. Administration of the glucagon-like peptide 1 receptor agonist exendin-4 significantly reduced food intake in a mouse model of ‘binge-like’ eating.ConclusionsThese findings implicate ultra-rare and novel damaging variants in neuropeptide/neurotropic factor signaling pathways in the development of eating disorder behaviors and identify glucagon-like peptide 1-receptor agonists as a potential treatment for binge eating.
Background
The prevalence of infections due to nontuberculous mycobacteria (NTM) is increasing worldwide, yet little is known about the epidemiology and pathophysiology of these ubiquitous environmental organisms. Pulmonary disease due to Mycobacterium avium complex is most prevalent, but many other NTM species can cause disease in virtually any organ system. As NTM becomes an increasingly common cause of morbidity and mortality, more information is needed about the epidemiology of NTM disease.
Methods
We conducted a retrospective chart review of all patients with cultures that grew NTM at a Midwestern tertiary hospital from 1996 to 2017. Information on demographics, medical history, clinical findings, treatment, and outcome was obtained from medical records of all NTM isolates. American Thoracic Society/Infectious Diseases Society of America criteria were used to define pulmonary NTM infections.
Results
We identified 1064 NTM isolates, 365 of which met criteria for NTM infection. Pulmonary cases predominated (185 of 365; 50.7%), followed by skin/soft tissue (56 of 365; 15.3%), disseminated (40 of 365; 11%), and lymphatic (28 of 365; 7.7%) disease. Mycobacterium avium complex was the most common species (184 of 365; 50.4%). Individuals aged >50 years were most affected (207 of 365; 56.7%). Common comorbidities included structural lung disease (116 of 365; 31.8%), use of immunosuppressive medications (78 of 365; 21.4%), malignancy (59 of 365; 16.2%), and human immunodeficiency virus (42 of 365; 11.5%).
Conclusions
This large cohort provides information on the demographics, risk factors, and disease course of patients with pulmonary and extrapulmonary NTM infections. Most patients had medical comorbidities that resulted in anatomic, genetic, or immunologic risk factors for NTM infection. Further population-based studies and increased disease surveillance are warranted to further characterize NTM infection prevalence and trends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.