Summary
Acinetobacter oleivorans
DR1 can utilize C12–C30 alkanes as a sole carbon source but not short‐chain alkanes (C6, C10). Two copies of each alkB‐, almA‐ and ladA‐type alkane hydroxylase (AH) are present in the genome of DR1 cells. Expression and mutational analyses of AHs showed that alkB1 and alkB2 are the major AH‐encoding genes under C12–C30, and the roles of other almA‐ and ladA genes are negligible. Our data suggested that AlkB1 is responsible for long‐chain alkane utilization (C24–C26), and AlkB2 is important for medium‐chain alkane (C12–C16) metabolism. Phylogenetic analyses revealed large incongruities between phylogenies of 16S rRNA and each AH gene, which implies that A. oleivorans
DR1 has acquired multiple alkane hydroxylases through horizontal gene transfer. Transcriptomic and qRT‐PCR analyses suggested that genes participating in the synthesis of siderophore, trehalose and poly 3‐hydroxybutyrate (PHB) were expressed at much higher levels when cells used C30 than when used succinate as a carbon source. The following biochemical assays supported our gene expression analyses: (i) quantification of siderophore, (ii) measurement of trehalose and (iii) observation of PHB storage. Interestingly, highly induced both ackA gene encoding an acetate kinase A and pta gene encoding a phosphotransacetylase suggested unusual ATP synthesis during C30 alkane degradation, which was demonstrated by ATP measurement using the ΔackA mutant. Impaired growth of the ΔaceA mutant indicated that the glyoxylate shunt pathway is important when C30 alkane is utilized. Our data provide insight into long‐chain alkane degradation in soil microorganisms.
Disruption of polyubiquitin gene Ubb leads to early-onset reactive gliosis and adult-onset hypothalamic neurodegeneration in mice. However, it remains unknown why reduced levels of ubiquitin (Ub) due to loss of Ubb lead to these neural phenotypes. To determine whether or not the defects in neurons or their progenitors per se, but not in their cellular microenvironment, are the cause of the neural phenotypes observed in Ubb−/− mice, we investigated the properties of cultured cells isolated from Ubb−/− mouse embryonic brains. Although cells were cultured under conditions promoting neuronal growth, Ubb−/− cells underwent apoptosis during culture in vitro, with increased numbers of glial cells and decreased numbers of neurons. Intriguingly, at the beginning of the Ubb−/− cell culture, the number of neural stem cells (NSCs) significantly decreased due to their reduced proliferation and their premature differentiation into glial cells. Furthermore, upregulation of Notch target genes due to increased steady-state levels of Notch intracellular domain (NICD) led to the dramatic reduction of proneuronal gene expression in Ubb−/− cells, resulting in inhibition of neurogenesis and promotion of gliogenesis. Therefore, our study suggests an unprecedented role for cellular Ub pools in determining the fate and self-renewal of NSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.