Disruption of polyubiquitin gene Ubb leads to early-onset reactive gliosis and adult-onset hypothalamic neurodegeneration in mice. However, it remains unknown why reduced levels of ubiquitin (Ub) due to loss of Ubb lead to these neural phenotypes. To determine whether or not the defects in neurons or their progenitors per se, but not in their cellular microenvironment, are the cause of the neural phenotypes observed in Ubb−/− mice, we investigated the properties of cultured cells isolated from Ubb−/− mouse embryonic brains. Although cells were cultured under conditions promoting neuronal growth, Ubb−/− cells underwent apoptosis during culture in vitro, with increased numbers of glial cells and decreased numbers of neurons. Intriguingly, at the beginning of the Ubb−/− cell culture, the number of neural stem cells (NSCs) significantly decreased due to their reduced proliferation and their premature differentiation into glial cells. Furthermore, upregulation of Notch target genes due to increased steady-state levels of Notch intracellular domain (NICD) led to the dramatic reduction of proneuronal gene expression in Ubb−/− cells, resulting in inhibition of neurogenesis and promotion of gliogenesis. Therefore, our study suggests an unprecedented role for cellular Ub pools in determining the fate and self-renewal of NSCs.
The polyubiquitin gene Ubc is upregulated under oxidative stress induced by arsenite [As(III)]. However, the detailed mechanism of Ubc upregulation and the exact role of ubiquitin (Ub) to protect cells against As(III)-induced toxicity remain unknown. Here, we found that Ubc-/- mouse embryonic fibroblasts (MEFs) exhibited reduced viability under As(III) exposure, although the Nrf2-Keap1 pathway was activated as a cytoprotective response. Intriguingly, due to the reduced polyubiquitination and delayed onset of degradation of Nrf2 in Ubc-/- MEFs, the basal expression levels of Nrf2 target genes were elevated. As(III)-induced accumulation of Ub conjugates occurred in an Nrf2-independent manner, probably due to cellular stress conditions, including reduced proteasomal activity. Increased cellular Ub levels were essential to polyubiquitinate misfolded proteins generated under As(III) exposure and to degrade them by the proteasome. However, when cellular Ub levels decreased, these misfolded proteins were not efficiently polyubiquitinated, but rather accumulated as large protein aggregates inside the cells, causing cytotoxicity. Furthermore, increased activity of the autophagic pathway to clear these aggregates was not observed in Ubc-/- MEFs. Therefore, reduced viability of Ubc-/- MEFs under As(III) exposure may not be due to dysregulation of the Nrf2-Keap1 pathway, but mostly to reduced efficacy to polyubiquitinate and degrade misfolded protein aggregates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.