Bone remodeling represents a physiological phenomenon of continuous bone tissue renewal that requires fine orchestration of multiple cell types, which is critical for the understanding of bone disease but not yet clarified in precise detail. Exosomes, which are cell-secreted nanovesicles drawing increasing attention for their broad biosignaling functions, can shed new light on how multiple heterogeneous cells communicate for the purpose of bone remodeling. In the healthy bone, exosomes transmit signals favoring both bone synthesis and resorption, regulating the differentiation, recruitment, and activity of most cell types involved in bone remodeling and even assuming an active role in extracellular matrix mineralization. Additionally, in the ailing bone, they actively participate in pathogenic processes constituting also potential therapeutic agents and drug vectors. The present review summarizes the current knowledge on bone exosomes and bone remodeling in health and disease.
Exosomes are extracellular vesicles, enriched in biomolecular cargo consisting of nucleic acids, proteins, and lipids, which take part in intercellular communication and play a crucial role in both physiologic functions and oncogenesis. Bladder cancer is the most common urinary malignancy and its incidence is steadily rising in developed countries. Despite the high five-year survival in patients diagnosed at early disease stage, survival substantially drops in patients with muscle-invasive or metastatic disease. Therefore, early detection of primary disease as well as recurrence is of paramount importance. The role that exosomal biomarkers could play in bladder cancer patient diagnosis and surveillance, as well as their potential therapeutic applications, has not been extensively studied in this malignancy. In the present review, we summarize all relevant data obtained so far from cell lines, animal models, and patient biofluids and tissues. Current literature suggests that urine is a rich source of extracellular vesicle-derived biomarkers, compared with blood and bladder tissue samples, with potential applications in bladder cancer management. Further studies improving sample collection procedures and optimizing purification and analytical methods should augment bladder cancer diagnostic, prognostic, and therapeutic input of extracellular vesicles biomarkers in the future.
Mantle cell lymphoma (MCL) is a mature B-cell neoplasm with a heterogeneous clinical and biological behavior. SOX11 oncogenic expression contributes to the aggressiveness of these tumors by different mechanisms including tumor and stromal cell interactions. However, the precise composition of the immune cell microenvironment of MCL, its possible relationship to SOX11 expression, and how it may contribute to tumor behavior is not well known. Here, we performed an integrative transcriptome analysis of 730 immune-related genes combined with the immune cell phenotype analysis by immunohistochemistry in SOX11+ and SOX11- primary nodal MCL cases and non-neoplastic reactive lymph nodes (RLN). SOX11+ MCL had a significant lower T-cell intratumoral infiltration compared to negative cases. A reduced expression of MHCI/II-like and T-cell costimulation and signaling activation related transcripts was significantly associated with poor clinical outcome. Moreover, we identified CD70 as a SOX11 direct target gene, whose overexpression was induced in SOX11+ but not SOX11- tumor cells by CD40L in vitro. CD70 was overexpressed in primary SOX11+ MCL and it was associated with an immune unbalance of the tumor microenvironment characterized by increased number of effector Treg cell infiltration, higher proliferation, and aggressive clinical course. CD27 was expressed with moderate to strong intensity in 76% of cases. Overall, our results suggest that SOX11 expression in MCL is associated with an immunosuppressive microenvironment characterized by CD70 overexpression in tumor cells, increased Treg cell infiltration and downmodulation of antigen-processing and -presentation and T-cell activation that could promote MCL progression and represent a potential target for tailored therapies.
The biomarkers commonly utilized in diagnostic evaluations of kidney disease suffer from low sensitivity, especially in the early stages of renal damage. On the other hand, obtaining a renal biopsy to augment clinical decision making can lead to potentially serious complications. In order to overcome the shortcomings of currently available diagnostic tools, recent studies suggest that exosomes, cell-secreted extracellular vesicles containing a large array of active molecules to facilitate cell-to-cell communication, may represent a rich source of novel disease biomarkers. Because of their endocytic origin, exosomes carry markers typical for their parent cells, which could permit the localization of biochemical cellular alterations in specific kidney compartments. Different types of exosomes can be isolated from noninvasively obtained biofluids; however, in the context of kidney disease, evidence has emerged on the role of urinary exosomes in the diagnostic and predictive modeling of renal pathology. The current review summarizes the potential application of exosomes in the detection of acute and chronic inflammatory, metabolic, degenerative, and genetic renal diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.