Agriculture represents one of the major strengths of the economic sector in Brazil. The need to avoid economic losses because of insect pest populations is one of the greatest challenges faced by this sector. Insect pests have caused annual losses of US$12.0 billion to the Brazilian economy, of which approximately US$1.6 billion are because of exotic pest species. Furthermore, exotic insect species often show greater potential to cause harm than native species. In Brazil, since the late nineteenth century, 24 species of insect pests have been introduced into the country, and they have caused significant economic losses. Many of these species, including Bemisia tabaci, Hypothenemus hampei, Ceratitis capitata, Oryzophagus oryzae and Anthonomus grandis, are major crop pests, and they were accidentally introduced during trading of agricultural products. In this review, we present an overview of Brazilian agriculture, a brief history of the introduction of insect pests in the country and the Brazilian legislation on agricultural defence, and we estimate the economic losses caused to the Brazilian economy by the main insect pest species that have been introduced into Brazil over the last 112 years.
U3 snoRNA is transcribed from two intron-containing genes in yeast, snR17A and snR17B. Although the assembly of the U3 snoRNP has not been precisely determined, at least some of the core box C/D proteins are known to bind pre-U3 co-transcriptionally, thereby affecting splicing and 3-end processing of this snoRNA. We identified the interaction between the box C/D assembly factor Nop17p and Cwc24p, a novel yeast RING finger protein that had been previously isolated in a complex with the splicing factor Cef1p. Here we show that, consistent with the protein interaction data, Cwc24p localizes to the cell nucleus, and its depletion leads to the accumulation of both U3 pre-snoRNAs. U3 snoRNA is involved in the early cleavages of 35 S pre-rRNA, and the defective splicing of pre-U3 detected in cells depleted of Cwc24p causes the accumulation of the 35 S precursor rRNA. These results led us to the conclusion that Cwc24p is involved in pre-U3 snoRNA splicing, indirectly affecting pre-rRNA processing.In eukaryotes, three of the rRNAs (18, 5.8, and 25 S in the yeast Saccharomyces cerevisiae) are transcribed by RNA pol 3 I as a single precursor, which undergoes various processing steps that include nucleotide modifications and endo-and exonucleolytic cleavages. In yeast, at least 150 factors are involved in 35 S pre-rRNA processing, including different proteins and snoRNPs. Processing and modification of the pre-rRNA seems to occur simultaneously with the assembly of ribosomal proteins, and large transient ribonucleoprotein (RNP) particles are formed in the nucleolus (1-3). Different sets of proteins were found in each complex. Among the proteins identified in the 90 S preribosomal complex are many of the small subunit ribosomal proteins, the core box C/D proteins (Nop1p, Nop56p, and Nop58p), U3 snoRNP-specific proteins, and other factors that might also be involved in the early steps of pre-rRNA processing (2). Proteins present in the pre-60 S complex are mainly involved in processing of 5.8 S and 25 S and in the formation of the large ribosome subunit (4, 5).
Shwachman-Bodian-Diamond syndrome is an autosomal recessive genetic syndrome with pleiotropic phenotypes, including pancreatic deficiencies, bone marrow dysfunctions with increased risk of myelodysplasia or leukemia, and skeletal abnormalities. This syndrome has been associated with mutations in the SBDS gene, which encodes a conserved protein showing orthologs in Archaea and eukaryotes. The Shwachman-Bodian-Diamond syndrome pleiotropic phenotypes may be an indication of different cell type requirements for a fully functional SBDS protein. RNA-binding activity has been predicted for archaeal and yeast SBDS orthologs, with the latter also being implicated in ribosome biogenesis. However, full-length SBDS orthologs function in a species-specific manner, indicating that the knowledge obtained from model systems may be of limited use in understanding major unresolved issues regarding SBDS function, namely, the effect of mutations in human SBDS on its biochemical function and the specificity of RNA interaction. We determined the solution structure and backbone dynamics of the human SBDS protein and describe its RNA binding site using NMR spectroscopy. Similarly to the crystal structures of Archaea, the overall structure of human SBDS comprises three well-folded domains. However, significant conformational exchange was observed in NMR dynamics experiments for the flexible linker between the N-terminal domain and the central domain, and these experiments also reflect the relative motions of the domains. RNA titrations monitored by heteronuclear correlation experiments and chemical shift mapping analysis identified a classic RNA binding site at the N-terminal FYSH (fungal, Yhr087wp, Shwachman) domain that concentrates most of the mutations described for the human SBDS.
Despite the importance of Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae) as a vector of maize‐stunting pathogens, it is not understood how this leafhopper survives the maize off‐season in regions where overwintering hosts do not occur. We investigated migration and the use of alternate hosts as possible survival mechanisms for D. maidis during maize off‐season in Brazil. Dalbulus maidis populations were monitored with yellow sticky cards for 16–29 months in Anastácio (Mato Grosso do Sul State), in two farms with perennial pastures (Pasture1 and Pasture2), where maize had not been planted for >5 years, in a subsistence farm >20 km distant, where maize was annually planted (spring) (Maize1), and in Piracicaba (São Paulo State), where maize was grown year round (Maize2). RAPD‐PCR analysis of leafhoppers sampled on maize in two plots (Maize1 and Pasture1) at 15–20 and 110–120 days after germination was performed. Dalbulus maidis was trapped in the maize plots of all areas, but not in weedy or woody vegetation adjacent to the plots. Higher numbers were trapped throughout the year in Piracicaba, where maize was continuously grown under irrigation, and in the subsistence farm of Anastácio, where volunteer maize plants were available for long periods in the maize off‐season. In Anastácio farms, some population peaks were recorded in the absence of maize from midwinter to early spring, especially after soil plowing. RAPD‐PCR analysis showed that D. maidis populations sampled were genetically similar. Our data suggest that D. maidis uses a mixed strategy to survive the over‐season period in Brazil, in which part of the population overwinters locally on volunteer maize plants or nearby irrigated maize crops, whereas the other individuals migrate to colonize new maize crops in distant areas or regions. We hypothesize that immigrant D. maidis uses the contrast between plowed and vegetated soil as a visual cue for locating new maize crops.
The sweet cassava cultivars BRS 396, BRS 397, BRS 398 and BRS 399, were selected through 27 participatory tests conducted at Distrito Federal, Brazil. Their agronomic performance and their high level of acceptance among producers qualify them as a new crop option for cultivation in the region.
A new strategy was developed to study the relationship between the translation and degradation of a specific mRNA in the yeast Saccharomyces cerevisiae. A series of 5'-untranslated regions (UTR) was combined with the cat gene from the bacterial transposon Tn9, allowing us to test the influence of upstream open reading frames (uORFs) on translation and mRNA stability. The 5'-UTR sequences were designed so that the minimum possible sequence alteration, a single nucleotide substitution, could be used to create a 7-codon ORF upstream of the cat gene. The uORF was translated efficiently, but at the same time inhibited translation of the cat ORF and destabilized the cat mRNA. Investigations of various derivatives of the 5'-UTR indicated that cat translation was primarily attributable to leaky scanning of ribosomes past the uORF rather than to reinitiation. Therefore, these data directly demonstrate destabilization of a specific mRNA linked to changes in translational initiation on the same transcript. In contrast to the previously proposed nonsense-mediated mRNA decay pathway, destabilization was not triggered by premature translational termination in the main ORF and was not discernibly dependent upon a reinitiation-driven mechanism. This suggests the existence of an as yet not described pathway of translation-linked mRNA degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.