The transcript levels and activities of the superoxide dismutase isoenzyme (Cu/ZnSOD) were assessed in winter (Tarm-92) and spring (Zafer-160) barley cultivars during cold acclimation, freezing stress and after rewarming. Leaf Cu/ZnSOD activity and Cu/ZnSOD expression level were not significantly changed during cold acclimation. The Cu/ZnSOD expression increased evidently at mild freezing stress (-3 °C; F1), while Cu/ZnSOD1 activity did not show any response and Cu/ZnSOD2 activity decreased continuously during F1 and F2 (-7 °C) in Tarm-92. On the other hand, root Cu/ZnSOD2 activity was in accordance with Cu/ZnSOD expression in Zafer-160 after F2 treatment. Rewarming periods did not cause any significant changes in the Cu/ZnSOD activity and expression of Cu/ZnSOD in both cultivars when compared to freezing stresses. These results showed that freezing stress can regulate differently Cu/ZnSOD transcription and enzyme activity.
The changes in growth and photosynthetic performance of two wheat (Triticum aestivum L.) cultivars (Bolal-2973 and Atay-85) differing in their sensitivity to boron (B) toxicity were investigated under toxic B conditions. Eight-day old seedlings were exposed to highly toxic B concentrations (5, 7.5, and 10 mM H 3 BO 3 ) for 5 and 9 days. Fast chlorophyll a fluorescence kinetics was determined and analysed using JIP test. Growth parameters, tissue B contents, and membrane damage were measured at two stress durations. The photochemical performance of PSII was hindered more in the sensitive cultivar (Atay-85) than that of the tolerant one (Bolal-2973) under B toxicity. The increase in the B concentration and stress duration caused membrane leakage in both cultivars. However, higher membrane damage was observed in Atay-85 compared to Bolal-2973. Additionally, significant reduction of growth parameters was observed in both cultivars at toxic B concentrations. The accumulation of B was higher in shoots than in roots of both cultivars. Nevertheless, Atay-85 translocated more B from roots to leaves compared to Bolal-2973. The advantages of certain JIP test parameters were demonstrated for evaluation of PSII activity in plants exposed to B stress. Evaluation of photosynthetic performance by JIP test as well as assessment of growth and tissue B content might be used to determine the effects of B toxicity in wheat. The results indicated lesser sensitivity to B toxicity in Bolal-2973 compared to Atay-85.
Earlier our colleagues detected that the genes related to jasmonate (JA), ethylene, and cell wall modification were significantly regulated under boron (B) toxicity in wheat. Determination of regulation mechanisms of these novel genes under B toxicity is very important in Arabidopsis thaliana as a model plant. As key regulators, the microRNAs (miRNAs) regulate gene expression at the posttranscriptional level and respond to numerous abiotic stresses in plants. In this study, expression levels of miRNAs such as miR159, miR172, miR319, and miR394 targeting JA and ethylene-related transcription factors and also miR397 targeting laccase were determined in Arabidopsis thaliana under toxic B conditions. Stem-loop quantitative reverse transcription polymerase chain reaction was used to amplify mature miRNAs for expression analyses. Expression levels of miRNAs targeting transcription factors related to JA and ethylene metabolisms were induced remarkably in moderate B toxicity (condition 1B) but not in severe B toxicity (condition 3B). Most remarkable regulations were obtained in miR172 and miR319 in Arabidopsis thaliana. Expression level of miR397 did not remarkably change under B toxicity, indicating a lack of posttranscriptional regulation of laccase related to cell wall modification. Moreover, miRNAs targeting transcription factors related to JA and ethylene metabolisms might be oxidative stress-adaptive responses of Arabidopsis to B toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.