DRH rats are a hepatocarcinogenesis-resistant strain isolated from hepatocarcinogenesis-sensitive Donryu rats, and the liver of DRH shows less histological damage and fewer/smaller neoplastic hepatic lesions by the treatment with hepatocarcinogens. To investigate the mechanism of the resistance, the properties of hepatocytes of DRH and Donryu were compared. In primary culture, DRH hepatocytes exhibited higher proliferation and less apoptosis than Donryu hepatocytes in the presence of EGF and insulin. However, such difference was not correlated to the degree of DNA damage associated with cell culture or cell cycle checkpoint function. Although the mitogen-activated protein kinases [EGF receptor (EGFR) and extracellular signal regulating kinases (ERK1/2)] were activated to the same degree, the stress-activated protein kinases [p38 mitogen-activated protein kinase (p38) and c-jun N-terminal kinase (JNK)] were activated to a lesser degree in the DRH hepatocytes. Treatment with 2-acetylaminofluorene (2-AAF) in vivo also resulted in less JNK and p38 activation in the DRH livers. Furthermore, apoptosis signal-regulating kinase 1 (ASK1) was inhibited by the lysate from the DRH but not by the Donryu hepatocytes. The low activation of the stress-activated protein kinases may be linked to the resistance to cellular stress, which may underlie the hepatocarcinogenesis-resistance in DRH rats.
Aims/Introduction
In Japan, an insulin pump with predictive low‐glucose management (PLGM) was launched in 2018. It automatically suspends insulin delivery when the sensor detects or predicts low glucose values. The aim of this study was to analyze the safety and efficacy of PLGM in patients treated in a Japanese center.
Materials and Methods
We carried out a retrospective observational analysis of 16 patients with type 1 diabetes mellitus and one patient after pancreatectomy. They switched from the MiniMed 620G device to the 640G device with PLGM. The primary outcome was the change in the percentage of time in hypoglycemia. The secondary outcome was the change in HbA1c (%) over a period of 3 months. We also explored the presence of “post‐suspend hyperglycemia” with the 640G device.
Results
After changing to the 640G device, the percentage of time in hypoglycemia (glucose <50 mg/dL) significantly decreased from 0.39% (0–1.51%) to 0% (0–0.44%;
P
= 0.0407). The percentage of time in hyperglycemia (glucose >180 mg/dL) significantly increased from 25.53% (15.78–44.14%) to 32.9% (24.71–45.49%;
P
= 0.0373). HbA1c significantly increased from 7.6 ± 1.0% to 7.8 ± 1.1% (
P
= 0.0161). From 1.5 to 4.5 h after the resumption of insulin delivery, the percentage of time in hyperglycemia was 32.23% (24.2–53.75%), but it was significantly lower, 2.78% (0–21.6%), when patients manually restarted the pump within 30 min compared with automatic resumption 31.2% (20–61.66%;
P
= 0.0063).
Conclusions
Predictive low‐glucose management is an effective tool for reducing hypoglycemia, but possibly elicits “post‐suspend hyperglycemia.” This information is useful for achieving better blood glucose control in the patients treated with PLGM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.