Land plants lose vast quantities of water to the atmosphere during photosynthetic gas exchange. In angiosperms, a complex network of veins irrigates the leaf, and it is widely held that the density and placement of these veins determines maximum leaf hydraulic capacity and thus maximum photosynthetic rate. This theory is largely based on interspecific comparisons and has never been tested using vein mutants to examine the specific impact of leaf vein morphology on plant water relations. Here we characterize mutants at the Crispoid (Crd) locus in pea (Pisum sativum), which have altered auxin homeostasis and activity in developing leaves, as well as reduced leaf vein density and aberrant placement of free-ending veinlets. This altered vein phenotype in crd mutant plants results in a significant reduction in leaf hydraulic conductance and leaf gas exchange. We find Crispoid to be a member of the YUCCA family of auxin biosynthetic genes. Our results link auxin biosynthesis with maximum photosynthetic rate through leaf venation and substantiate the theory that an increase in the density of leaf veins coupled with their efficient placement can drive increases in leaf photosynthetic capacity.
In recent years the biosynthesis of auxin has been clarified with the aid of mutations in auxin biosynthesis genes. However, we know little about the effects of these mutations on the seed-filling stage of seed development. Here we investigate a key auxin biosynthesis mutation of the garden pea, which results in auxin deficiency in developing seeds. We exploit the large seed size of this model species, which facilitates the measurement of compounds in individual seeds. The mutation results in small seeds with reduced starch content and a wrinkled phenotype at the dry stage. The phenotypic effects of the mutation were fully reversed by introduction of the wild-type gene as a transgene, and partially reversed by auxin application. The results indicate that auxin is required for normal seed size and starch accumulation in pea, an important grain legume crop.
is a powerful regulator of plant growth and development (Heisler and Byrne, 2020). Accurate quantification of the main form of auxin, indole-3acetic acid (IAA), is therefore essential for the study of auxin biology. Synthetic forms of the IAA-related compounds indole-3-pyruvic acid (IPyA) and indole-3-acetaldehyde (IAAld) have been shown to convert nonenzymatically to IAA, particularly in aqueous environments (
Chemical dormancy breakers are often used to manipulate floral bud break in sweet cherry production, and their use is increasing due to unpredictable climate effects. The role of plant hormones in regulating the critical transition of floral buds from dormant to opening in deciduous trees is now emerging. By monitoring changes in endogenous hormone levels within floral buds that are undergoing the transition from dormant to the growing state in response to various cues (environmental and/or chemical inducers), we can begin to distinguish the plant hormones that are the drivers of this process. This study sought to identify key hormonal regulators of floral bud break using sweet cherry as a model and modifying timing of bud break through the application of two chemical dormancy breakers, hydrogen cyanamide (HC, Dormex®) and emulsified vegetable oil compound (EVOC, Waiken®), and to determine the effect of these chemicals on fruit growth and quality. Treatments were applied at label rates 35–40 days before estimated bud break. We found that HC-treated tree buds broke earlier, and this was associated with a significant early elevation of the cytokinins dihydrozeatin and dihydrozeatin riboside compared to the control and EVOC-treated tree buds. In contrast, changes in auxin and abscisic acid content did not appear to explain the hastened bud burst induced by hydrogen cyanamide. While HC-treated trees resulted in larger fruit, there was a higher incidence of cracked fruit and the pack-out of A-grade fruit was reduced. The increase in fruit size was attributed to the earlier flowering and hence longer growing period. Harvest assessment of fruit quality showed no treatment effect on most quality parameters, including fruit dry matter content, total soluble solids or malic acid content, but a reduction in fruit compression firmness and stem pull force in EVOC-treated trees was observed. However, all fruit still met the Australian industry fruit quality export market standards. This study offers important insights into bud hormonal activities underpinning the action of these chemical regulators; understanding bud responses is critically important to ensuring consistent and sustainable fruit tree production systems into the future. It also demonstrates that the dormancy-breaking agents HC and EVOC have no detrimental impact on fruit quality at harvest or following storage, however growers need to be aware of the potential for increased fruit cracking when earlier bud break results in a longer growing season which has the potential to increase fruit size. Further studies are required to determine the role of gibberellin in hastening bud break by dormancy breakers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.