In this article we evaluate the effects of ultrasound radiation and its causes on the rate of injured peripheral nerve regeneration by crushing the sciatic nerve of rats with hemostatic forceps. The rats were divided into three test and one control groups. The test groups were radiated using three different types of ultrasound parameters while the control group just received sham expose. The amount of nerve regeneration was measured via functional test by extracting sciatic functional index from rats paw prints. The results showed that one of the test group parameters had the best functional results compared to other groups. Obtaining this outcome, the investigations continued by 50 rats with crushed sciatic nerve. These rats again divided into two test and control groups while for the test group the best parameters were assigned. In different time intervals compound muscle action potential wave was recorded from five rats of each group. Then their sciatic nerves were extracted to measure the amount of ciliary neurotropic factor gene expression by real time polymerase chain reaction. Crush injury sets the sciatic functional index to about -90 and compound muscle action potential to 6.8 mV in both control and test groups. After the period of treatment with ultrasound, the sciatic functional index reached the value of -25 in control group and -10 in test group and compound muscle action potential value reached 11 in control and 18 in test group. The results of electrophysiological tests confirmed the results of functional tests. At the end of the second, third and fourth weeks, the outcomes of real time polymerase chain reaction showed that the expression of ciliary neurotropic factor gene in test group was higher than control group as well as the amount in test group was approximately 11, 2 and 6 times higher than test group in corresponding weeks. Hence we can conclude that increase in the expression of ciliary neurotropic factor gene, as a nerve growth factor, following ultrasound radiation, can be considered as the reason of the effect of ultrasound on the rate of injured nerve regeneration.
MicroRNAs (miRNAs) exert a critical influence on physiological and pathological processes through posttranscriptional modification of their mRNA targets. They play important roles in tumorigenesis and are considered to be potential diagnostic and prognostic biomarkers with various cancers. MiR-200c and miR-9 are regulatory elements that can have dual impacts as oncogenes and/or tumor suppressor genes. MiR-200c regulates two transcription factors, ZEB1 and ZEB2, while miR-9 is a regulatory factor for the E-cadherin protein which has a critical function in cell-cell junctions and is inhibited by two transcription factors ZEB1 and ZEB2. In this study, expression levels of miR-200c and miR-9, ZEB-1, ZEB-2 and E-cadherin were assessed in 30 non-small cell lung cancers (NSCLCs) by real-time qPCR. MiR-9 was down-regulated significantly in tumor tissues compared to normal adjacent tissues, while there was no significant change in expression level of miR-200c. On the other hand, ZEB1 demonstrated significant increase and ZEB2a decrease at the mRNA level. These results indicate roles for miR-9 and ZEB1 in genesis of lung cancer, although clinico-pathological associations were not evident. Further studies are necessary to assess implications for treatment of lung cancer.
Stability studies of chitosan-DNA-FAP-B nanoparticles for gene delivery to lung epithelial cellsA successful gene delivery system requires efficiency and stability during storage. Stability studies are imperative for nanomedicines containing biotechnological products such as plasmids and targeting peptides. Chitosan-DNA-FAP-B nanoparticles are novel non-viral vectors for specific gene delivery to the lung epithelial cells. In this study, the storage stability of chitosan-DNA-FAP-B nanoparticles at -20, 5 and 24 °C was examined. Size, zeta potential and transfection efficiency of these nano-particles in storage were also evaluated. Stability studies showed that chitosan-DNA-FAP-B nanoparticles were stable after 1 month when stored at -20 °C and retained their initial size, zeta potential and transfection efficiency. However, their stability was not desirable at 5 and 24 °C. Based on these results, it can be concluded that chitosan-DNA-FAP-B nanoparticles can be a promising candidate for gene delivery to lung epithelial cells with good storage stability at -20 °C during 1 month.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.