Summary Histone variants were recently discovered to regulate neural plasticity, with H2A.Z emerging as a memory suppressor. Using whole-genome sequencing of the mouse hippocampus, we show that basal H2A.Z occupancy is positively associated with steady-state transcription, whereas learning-induced H2A.Z removal is associated with learning-induced gene expression. AAV-mediated H2A.Z depletion enhanced fear memory and resulted in gene-specific alterations of learning-induced transcription, reinforcing the role of H2A.Z as a memory suppressor. H2A.Z accumulated with age, although it remained sensitive to learning-induced eviction. Learning-related H2A.Z removal occurred at largely distinct genes in young vs old mice, suggesting that H2A.Z is subject to regulatory shifts in the aged brain despite similar memory performance. When combined with prior evidence of H3.3 accumulation in neurons, our data suggest that nucleosome composition in the brain is reorganized with age.
Memory formation is a protracted process that initially involves the hippocampus and becomes increasingly dependent on the cortex over time, but the mechanisms of this transfer are unclear. We recently showed that hippocampal depletion of the histone variant H2A.Z enhances both recent and remote memories, but the use of virally mediated depletion reduced H2A.Z levels throughout testing, making its temporally specific function unclear. Given the lack of drugs that target histone variants, we tested existing drugs for efficacy against H2A.Z based on their targeting of known H2A.Z regulators. The Tip60 (part of H2A.Z deposition complex) inhibitor Nu9056 reduced H2A.Z binding, whereas the histone deacetylase (HDAC) inhibitor Trichostatin-A increased H2A.Z acetylation without influencing total H2A.Z in cultured hippocampal neurons. Tip60 (but not HDAC) inhibition 23 h after learning enhanced remote (tested at 7 d) and not recent (tested at 24 h) contextual fear memory in mice. In contrast, Tip60 inhibition 30 d after learning impaired recall of remote memory after 1 h, but protected the memory from further decline 24 h later. These data provide the first evidence of a delayed postlearning role for histone variants in supporting memory transfer during systems consolidation.
Gene editing tools are essential for uncovering how genes mediate normal brain–behavior relationships and contribute to neurodegenerative and neuropsychiatric disorders. Recent progress in gene editing technology now allows neuroscientists unprecedented access to edit the genome efficiently. Although many important tools have been developed, here we focus on approaches that allow for rapid gene editing in the adult nervous system, particularly CRISPR/Cas9 and anti-sense nucleotide-based techniques. CRISPR/Cas9 is a flexible gene editing tool, allowing the genome to be manipulated in diverse ways. For instance, CRISPR/Cas9 has been successfully used to knockout genes, knock-in mutations, overexpress or inhibit gene activity, and provide scaffolding for recruiting specific epigenetic regulators to individual genes and gene regions. Moreover, the CRISPR/Cas9 system may be modified to target multiple genes at one time, affording simultaneous inhibition and overexpression of distinct genetic targets. Although many of the more advanced applications of CRISPR/Cas9 have not been applied to the nervous system, the toolbox is widely accessible, such that it is poised to help advance neuroscience. Anti-sense nucleotide-based technologies can be used to rapidly knockdown genes in the brain. The main advantage of anti-sense based tools is their simplicity, allowing for rapid gene delivery with minimal technical expertise. Here, we describe the main applications and functions of each of these systems with an emphasis on their many potential applications in neuroscience laboratories.
Background and Objectives Depression is an important risk factor for Alzheimer’s disease (AD) but little is known about the mechanisms of this association. Given sex differences in both AD and depression, we sought to conduct a systematic review and meta-analysis to examine whether there are sex differences in their association, as this may improve understanding of underlying mechanisms. Research Design and Methods MEDLINE, PsycINFO, and Cochrane Reviews were searched for observational studies including both sexes and examining the association between history of depression and AD. Results Forty studies, including 62,729 women and 47,342 men, were identified. Meta-analysis was not possible because only 3 studies provided sufficient data. Seven studies provided information about the influence of sex for a qualitative synthesis. Two found an association in men only, 2 in women only, and 3 reported no sex differences. The 2 studies finding an association in women only were unique in that they had the shortest follow-up periods, and were the only clinic-based studies. Discussion and Implications The findings of our systematic review show that there are important methodological differences among the few studies providing data on the influence of sex on depression as a risk factor for AD. Had all 40 studies provided sex-segregated data, these methodological differences and their impact on sex effects could have been examined quantitatively. We encourage researchers to report these data, as well as potential moderating factors, so that the role of sex differences can be better understood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.