Plant-derived proteins have emerged as leading candidates in several drug and food delivery applications in diverse pharmaceutical designs. Zein is considered one of the primary plant proteins obtained from maize, and is well known for its biocompatibility and safety in biomedical fields. The ability of zein to carry various pharmaceutically active substances (PAS) position it as a valuable contender for several in vitro and in vivo applications. The unique structure and possibility of surface covering with distinct coating shells or even surface chemical modifications have enabled zein utilization in active targeted and site-specific drug delivery. This work summarizes up-to-date studies on zein formulation technology based on its structural features. Additionally, the multiple applications of zein, including drug delivery, cellular imaging, and tissue engineering, are discussed with a focus on zein-based active targeted delivery systems and antigenic response to its potential in vivo applicability.
In this study, the potential cytotoxicity of four plant extracts originated from Cameroon: Xylopia aethiopica (XA), Imperata cylindrica (IC), Echinops giganteus (EG) and Dorstenia psilurus (DP) were examined in vitro. We tested the anti-proliferative activity of the methanolic extracts of these compounds using MTT assay on seven different human cancer cell lines: HeLa, MDA-MB-231, A549, HepG2, U-87, SK-OV-3 and HL60. Induction of cell death was assessed by cell cycle analysis, apoptosis was determined by Annexin V-FITC binding and caspase 3/7 activity. As well, changes in mitochondrial membrane potential (MMP) and cell migration were tested. The genetic toxicity, using the alkaline comet assay, was evaluated. The studied extracts inhibited the cell proliferation of all tested cancer cell lines with concentration dependent effect over time. All of these extracts mainly induced apoptosis of HeLa cells by the accumulation of hypodiploid cells in the sub-G0/G1 phase and increasing the activity of caspase 3/7, as well they showed potential MMP disturbance and expressed a marked inhibitory effect on cell migration. Assessment of probable genetic toxicity by these extracts revealed no or minimum incidence of genetic toxicity. Therefore, the studied plant extracts are exhibiting potent anticancer activity based upon marked induction of tumor-cell death.
Recent advances in molecular biology have discovered the mysterious role of long non-coding RNAs (lncRNAs) as potential biomarkers for cancer diagnosis and targets for advanced cancer therapy. Studies have shown that lncRNAs take part in the incidence and development of cancers in humans. However, previously they were considered as mere RNA noise or transcription byproducts lacking any biological function. In this article, we present a summary of the progress on ascertaining the biological functions of five lncRNAs (HOTAIR, NEAT1, H19, MALAT1, and MEG3) in female-oriented cancers, including breast and gynecological cancers, with the perspective of carcinogenesis, cancer proliferation, and metastasis. We provide the current state of knowledge from the past five years of the literature to discuss the clinical importance of such lncRNAs as therapeutic targets or early diagnostic biomarkers. We reviewed the consequences, either oncogenic or tumor-suppressing features, of their aberrant expression in female-oriented cancers. We tried to explain the established mechanism by which they regulate cancer proliferation and metastasis by competing with miRNAs and other mechanisms involved via regulating genes and signaling pathways. In addition, we revealed the association between stated lncRNAs and chemo-resistance or radio-resistance and their potential clinical applications and future perspectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.