The bactericidal efficiency of various positively and negatively charged silver nanoparticles has been extensively evaluated in literature, but there is no report on efficacy of neutrally charged silver nanoparticles. The goal of this study is to evaluate the role of electrical charge at the surface of silver nanoparticles on antibacterial activity against a panel of microorganisms. Three different silver nanoparticles were synthesized by different methods, providing three different electrical surface charges (positive, neutral, and negative). The antibacterial activity of these nanoparticles was tested against gram-positive (i.e., Staphylococcus aureus, Streptococcus mutans, and Streptococcus pyogenes) and gram-negative (i.e., Escherichia coli and Proteus vulgaris) bacteria. Well diffusion and micro-dilution tests were used to evaluate the bactericidal activity of the nanoparticles. According to the obtained results, the positively-charged silver nanoparticles showed the highest bactericidal activity against all microorganisms tested. The negatively charged silver nanoparticles had the least and the neutral nanoparticles had intermediate antibacterial activity. The most resistant bacteria were Proteus vulgaris. We found that the surface charge of the silver nanoparticles was a significant factor affecting bactericidal activity on these surfaces. Although the positively charged nanoparticles showed the highest level of effectiveness against the organisms tested, the neutrally charged particles were also potent against most bacterial species.
The effect of Plant Growth-Promoting Rhizobacteria (PGPR) on seed germination, seedling growth and yield of field grown maize were evaluated in three experiments. In these experiments six bacterial strains include P. putida strain R-168, P. fluorescens strain R-93, P. fluorescens DSM 50090, P. putida DSM291, A. lipoferum DSM 1691 and A. brasilense DSM 1690 were used. Results of first study showed seed inoculation significantly enhanced seed germination and seedling vigour of maize. In second experiment, leaf and shoot dry weight and also leaf surface area significantly were increased by bacterial inoculation in both sterile and non-sterile soil. The results showed that inoculation with bacterial treatments had a more stimulating effect on growth and development of plants in nonsterile than sterile soil. In the third experiment, Inoculation of maize seeds with all bacterial strains significantly increased plant height, 100 seed weight, number of seed per ear and leaf area. The results also showed significant increase in ear and shoot dry weight of maize.
Rapid person-to-person transfer of viruses such as SARS-CoV-2 and their occasional mutations owing to the human activity and climate/ecological changes by the mankind led to creation of wrecking worldwide challenges. Such fast transferable pathogens requiring practical diagnostic setups to control their transfer chain and stop sever outbreaks in early stages of their appearance. Herein, we have addressed this urgent demand by designing a rapid electrochemical diagnostic kit composed of fixed/screen printed electrodes that can detect pathogenic viruses such as SARS-CoV-2 and/or animal viruses through the differentiable fingerprint of their viral glycoproteins at different voltage positions. The working electrode of developed sensor is activated upon coating a layer of coupled graphene oxide (GO) with sensitive chemical compounds along with gold nanostars (Au NS) that can detect the trace of viruses in any aquatic biological media (e.g., blood, saliva and oropharyngeal/nasopharyngeal swab) through interaction with active functional groups of their glycoproteins. The method do not require any extraction and/or biomarkers for detection of target viruses and can identify trace of different pathogenic viruses in about 1 min. The nanosensor also demonstrated superior limit of detection (LOD) and sensitivity of 1.68 × 10
−22
μg mL
−1
and 0.0048 μAμg.mL
−1
. cm
−2
, respectively, toward detection of SARS-CoV-2 in biological media, while blind clinical evaluations of 100 suspected samples furtherly confirmed the superior sensitivity/specificity of developed nanosystem toward rapid identification of ill people even at incubation and prodromal periods of illness.
Abstract:Field experiments were conducted at Cereal Crops Research Institute, Pirsabak, Nowshera, Pakistan, during winter 2003~2004 and 2004~2005 to evaluate the effect of nitrogen and sulfur levels and methods of nitrogen application on canola (Brassica napus L. cv. Bulbul-98) under rainfed conditions. Four levels of S (0, 10, 20, and 30 kg/ha) and three levels of N (40, 60, and 80 kg/ha) and a control treatment with both nutrients at zero level were included in the experiments. Sulfur levels were applied at sowing while N levels were applied by three methods (100% soil application, 90% soil+10% foliar application, and 80% soil +20% foliar application). The experiments were laid out in randomized complete block (RCB) design having four replications. Oil content increased significantly up to 20 kg S/ha but further increase in S level did not enhance oil content. Glucosinolate content increased from 13.6 to 24.6 µmol/g as S rate was increased from 0 to 30 kg/ha. Protein content increased from 22.4% to 23.2% as S rate was increased from 0 to 20 kg/ha. Oil content responded negatively to the increasing N levels. The highest N level resulted in the highest values for protein (23.5%) and glucosinolate (19.9 µmol/g) contents. Methods of N application had no significant impact on any parameters under study.
Proteins have short half-life because of enzymatic cleavage. Here, a new protein nanocarrier made of graphene oxide (GO) + Chitosan (CS) is proposed to successfully prevent proteolysis in protein and simultaneously retain its activity. Bovine serum albumin (BSA) and collagenase were loaded on GO and GO-CS to explore the stability and activity of proteins. SEM, AFM, TEM, DSC, UV-Vis, FT-IR, RBS, Raman, SDS-PAGE and zymography were utilized as characterization techniques. The protecting role of GO and GO-CS against enzymatic cleavage was probed by protease digestion analysis on BSA, where the protease solution was introduced to GO-BSA and GO-CS-BSA at 37 °C for 0.5-1-3-6 hours. Characterizations showed the successful synthesis of few layers of GO and the coverage by CS. According to gelatin zymographic analysis, the loaded collagenase on GO and GO-CS lysed the gelatin and created non-staining bands which confirmed the activity of loaded collagenase. SDS-PAGE analysis revealed no significant change in the intact protein in the GO-BSA and GO-CS-BSA solution after 30-minute and 1-hour exposure to protease; however, free BSA was completely digested after 1 hour. After 6 hours, intact proteins were detected in GO-BSA and GO-CS-BSA solutions, while no intact protein was detected in the free BSA solution.
To accelerate genetic gains in breeding, physiological trait (PT) characterization of candidate parents can help make more strategic crosses, increasing the probability of accumulating favorable alleles compared to crossing relatively uncharacterized lines. In this study, crosses were designed to complement
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.